
Historical and Impact Analysis of
API Breaking Changes: A Large-Scale Study

Laerte Xavier, Aline Brito, Andre Hora, Marco Tulio Valente
ASERG Group

Department of Computer Science (DCC)
Federal University of Minas Gerais, Brazil

{laertexavier,alinebrito,hora,mtov}@dcc.ufmg.br

Abstract—Change is a routine in software development. Like
any system, libraries also evolve over time. As a consequence,
clients are compelled to update and, thus, benefit from the avail-
able API improvements. However, some of these API changes may
break contracts previously established, resulting in compilation
errors and behavioral changes. In this paper, we study a set
of questions regarding API breaking changes. Our goal is to
measure the amount of breaking changes on real-world libraries
and its impact on clients at a large-scale level. We assess (i) the
frequency of breaking changes, (ii) the behavior of these changes
over time, (iii) the impact on clients, and (iv) the characteristics
of libraries with high frequency of breaking changes. Our large-
scale analysis on 317 real-world Java libraries, 9K releases, and
260K client applications shows that (i) 14.78% of the API changes
break compatibility with previous versions, (ii) the frequency of
breaking changes increases over time, (iii) 2.54% of their clients
are impacted, and (iv) systems with higher frequency of breaking
changes are larger, more popular, and more active. Based on these
results, we provide a set of lessons to better support library and
client developers in their maintenance tasks.

Index Terms—Software Evolution; API Usage; API Stability;
Backwards Compatibility.

I. INTRODUCTION

In software development, change often occurs to accom-
modate new features, fix bugs, and refactor source code.
Software libraries, commonly used nowadays to improve
development productivity and support functionality reuse on
client applications [1], [2], are not different and also evolve
over time [3]. These functionalities are provided by libraries to
clients via Application Programming Interfaces (APIs), which
are contracts that client applications rely on [4]. Ideally, APIs
should be backward-compatible when evolving, i.e., do not
break contracts with their client applications.

In practice, breaking client applications is a common prac-
tice: previous studies indicate that APIs are usually backward-
incompatible [5]–[8]. In this context, several solutions have
been proposed to mitigate the impact on clients (e.g., [9]–
[13]). For example, by mining version history, some studies
suggest how client applications should be updated due to
broken API elements (e.g., a public method removed from an
old library version). However, even though there are solutions
to alleviate the impact of library evolution, we are still unaware
about the real size of this impact on client applications: to
what extent are clients affected by backward-incompatibility?
Furthermore, we are unsure whether backward-incompatibility

tends to get better (or worse) over time: is this a problem only
faced by newer (and possibly “unstable”) libraries or older
(and “stable”) ones should also take special care with API
compatibility?

In this paper, we study a set of questions regarding API
breaking changes. We analyze (i) the frequency of API break-
ing changes, (ii) the behavior of these changes over time, (iii)
the impact on client applications, and (iv) the characteristics of
libraries with high frequency of breaking changes. Our main
goal is twofold: to measure the amount of breaking changes
on real world libraries and its impact on clients at a large-
scale level. Therefore, we investigate the following research
questions to support our study:

• RQ1. What is the frequency of API breaking changes?
• RQ2. How do API breaking changes evolve over time?
• RQ3. What is the impact of API breaking changes in

client applications?
• RQ4. What are the characteristics of libraries with high

and low frequency of breaking changes?

In this study, we analyze 317 real-world Java libraries, 9K
releases, and 260K client applications. Our results show that (i)
14.78% of the API changes break compatibility with previous
versions, (ii) the frequency of breaking changes increases over
time, (iii) only 2.54% of their clients are potentially impacted,
and (iv) libraries with higher frequency of breaking changes
are larger, more popular, and more active. Based on these
results, we provide a set of lessons to better support library
and client developers in their maintenance tasks. Therefore,
the contributions of this paper are summarized as follows:

• We provide a large-scale study to better understand the
extension and the impact of API breaking changes.

• We provide lessons learned from our API analysis to
support library/client developers in maintenance activities

Structure of the paper: Section II presents the background on
API changes. We describe our experiment design in Section III
and present the experiment results in Section IV. Summary and
findings are described in Section V. Section VI states threats
to validity and Section VII presents related work. Finally, we
conclude the paper in Section VIII.

978-1-5090-5501-2/17 c© 2017 IEEE SANER 2017, Klagenfurt, Austria
Main Research

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

138

II. BACKGROUND

Libraries provide interfaces to software components created
to be reused by client applications [4]. They take advantage
of visibility modifiers to expose interfaces meant to be stable
(e.g., in Java they use public and protected modifiers).
As any other software system, during their life cycle, libraries
are also subjected to evolutionary changes, such as addition,
removal, or modification of their API elements, including
types, fields, and methods. However, the cost of evolving
libraries may become higher due to the impact on external
clients. In this context, API changes are classified into break-
ing changes and non-breaking changes [14], as follows:

• Breaking changes. Changes that break backward compat-
ibility through removal or modification of API elements.
As a consequence, clients may face compilation errors
after updating.

• Non-breaking changes. Changes that preserve compati-
bility and usually involve addition of new functionalities
to the library. Thus, migrating between API versions
including only non-breaking changes does not cause
negative effects to client applications.

In this work, we define and implement an API diff tool to
identify breaking changes and non-breaking changes between
two versions of a Java library. Table I details the changes
evaluated in our diff. In the case of types, breaking changes
include removal of a type, change on its visibility modifier
(e.g., from public to protected), and change in the type’s
supertype. Breaking changes in fields include, for example,
changes in the field’s type or default value. Breaking changes
in methods include, for example, changes in their signatures.
By contrast, non-breaking changes include addition of new
elements and change on visibility modifiers (e.g., from private
to public or protected). Furthermore, changes in deprecated
elements (e.g., deprecated method removal) are classified as
non-breaking changes by our diff tool, because developers in
this case have been previously alerted about the risks of using
deprecated elements. A similar decision is followed in other
studies about breaking changes [14].

TABLE I
EVALUATED BREAKING AND NON-BREAKING CHANGES.

Category API Element List of Changes

Breaking

Type REMOVAL, VISIBILITY LOSS,
SUPERTYPE CHANGE

Field
REMOVAL, VISIBILITY LOSS,
TYPE CHANGE, DEFAULT VALUE
CHANGE

Method

REMOVAL, VISIBILITY LOSS,
RETURN TYPE CHANGE,
PARAMETER LIST CHANGE,
EXCEPTION LIST CHANGE

Non-breaking All ADDITION, VISIBILITY GAIN,
DEPRECATION OPERATION

III. STUDY DESIGN

A. Selecting Java Libraries

To answer the proposed research questions, we analyzed
the most popular Java libraries hosted on GitHub. First, we
selected the top 1,000 repositories ordered by number of stars.
Then, we manually classified them into library (554 reposi-
tories, 55.40%) and non-library (446 repositories, 44.60%).
This manual classification was performed by the first author
of this paper with the support of each repository web page and
documentation. Finally, from the library group, we discarded
the ones in the first quartile of number of releases and age, as
follows:

• Number of releases. We selected libraries with two or
more releases (i.e., first quartile equals to 1). We applied
this criteria to focus on active libraries and to ensure at
least one pair of releases to be compared in each library.

• Age. We selected systems with more than 515 days from
the first commit (i.e., first quartile equals to 515 days).
We use this criteria to assess libraries with a relevant
evolution and to ensure historical data to our analysis.

Based on this filtering criteria, the final selection has
317 libraries1, including well-known ones such as FACE-
BOOK/REACTNATIVE, GOOGLE/GUAVA, and JUNIT-TEAM/-
JUNIT4. To better characterize these libraries, Figure 1
presents the distribution of number of releases and age (in
years) as well as number of stars and files. We provide violin
plots for all 1,000 initial repositories, for the 554 repositories
categorized as library, and for the 317 studied libraries.
Violin plots are useful for presenting the distribution of data
because besides embedding a box plot they also show the
probability density of the data at different values. Considering
the studied libraries, we have the following results. For number
of releases, the first quartile, median, and third quartile are 6,
15, and 29 releases. For age, the quartiles are 2.2, 3.4, and 5.2
years. For number of stars, the first quartile, median, and third
quartile are 1,216, 1,792 and 3,215 stars. Finally, for number
of files, the quartiles are 1,298, 6,676, and 25,335 files. We
observe that the studied libraries are statistically significant
different for number of releases, age, and number of stars (p-
value < 0.05 for Mann-Whitney test), when compared to the
all repository and also to the libraries repository. However,
they are not statistically different for number of files.

B. Extracting API Breaking Changes (RQ1 and RQ2)

To measure the frequency of API breaking changes, we
first identified all API changes as described in Section II.
We implemented a parser based on the Eclipse JDT library
to compute the diff between API elements (types, fields, and
methods) from two library releases. We focused on public and
protected API elements because they represent the external
contract between libraries and clients. Let Rn be the last
release and R1 the first one of a given library. To answer
RQ1, we computed the diff between releases Rn and Rn−1,

1Further description of repositories labeled as All, Library, and Studied
available at: https://goo.gl/BU4W0C

139

6 6
15

10

100

1000

40000

All Library Studied

R

el
ea

se
s

(lo
g

sc
al

e)
Releases

2.3 2.32
3.4

0.1

1.0

10.0

All Library Studied

Ye

ar
s

(lo
g

sc
al

e)

Age

1459.5 1522
1792

1000

2500

10000

40000

All Library Studied

St

ar
s

(lo
g

sc
al

e)

Stars

6678.5 4185 6676

1e+01

1e+03

1e+05

1e+07

All Library Studied

Fi

le
s

(lo
g

sc
al

e)

Number of Files

Fig. 1. Repositories distributions by releases, age, stars, and files.

i.e., diff(Rn,Rn−1). To answer RQ2, we compared all releases
(from R1 to Rn) of a library, i.e., diff(Ri,Ri−1) for i = 2 . . . n.
To better understand this data in RQ2, we summarized the
breaking changes over time per year.

C. Measuring API Breaking Changes Impact (RQ3)

To support answering RQ3, we calculated the impact of the
breaking changes identified in RQ1 on client systems. Using
an ultra-large dataset of Java systems, we counted the ones that
feature an import statement to the detected breaking changes.
For types, we perform a direct analysis by looking for their
qualified names. For methods and fields, on the other hand,
we assess the imports of their enclosing type. In other words,
if a breaking change is detected in a method m of a class
C, we count as potentially impacted all clients that import C.
This approach at least retrieves the worst case scenario of the
potential impact measure.

To collect the client systems, we used JAVALI2, a tool to
measure popularity of Java libraries. This tool works on the top
of a dataset with more than 260K Java systems and it is based
on the BOA infrastructure [15], [16]. As an example, Table II
shows the top-5 most used types, with their corresponding
number of clients. The number of clients range from 88K
(java.io.file) to 143K (java.util.ArrayList).

TABLE II
TOP-5 POPULAR TYPES.

Position Name Number of
Clients

1 java.util.ArrayList 143,454
2 java.io.IOException 136,058
3 java.util.List 134,053
4 java.util.HashMap 94,220
5 java.io.File 88,703

D. Comparing Libraries with High and Low Frequency of
Breaking Changes (RQ4)

In order to distinguish libraries with low and high rates of
API breaking changes, we classified the studied libraries in two
groups (top and bottom) to answer RQ4. We then collected a

2http://java.labsoft.dcc.ufmg.br/javali

set of project metrics (such as activity, size, etc) to compare
both groups. The goal is to verify whether these metrics have
an impact on the number of API breaking changes. This
process is summarized in the following three steps.

1. Defining metrics likely to impact breaking changes. To
analyze libraries with high and low rate of breaking changes,
we define five dimensions related to open source development
and social coding: popularity, size, community, activity, and
maturity. For each of them, we define specific metrics to
measure and characterize the studied libraries. These metrics
were also used in a previous study about the adoption of
replacement messages in API deprecation [8]. Each dimension
and the corresponding metrics are described as:

• Popularity. Represents how popular a library is on
GitHub. The metrics are number of stars, number of
watchers, and number of forks.

• Size. Characterizes the library volume of artifacts. The
associated metrics are number of files and number of API
elements (i.e., sum of public and protected types, fields,
and methods).

• Community. Represents the library community size. The
metrics are number of contributors, average files per
contributor, and average API elements per contributor.

• Activity. Characterizes the activity level of a library
development team. The metrics are number of commits,
number of releases, and average days per release.

• Maturity. Represents the age of a library. The associated
metric is number of years.

2. Selecting Top and Bottom libraries. We consider two
groups of libraries: the ones with low rate of breaking changes,
labeled as top libraries, and a second group, labeled as bottom
libraries, with higher rates of breaking changes.

We first identified the active libraries, i.e., the ones with
at least one API change (either breaking or non-breaking),
resulting in 235 libraries. Then, we sorted these 235 libraries,
in ascending order, by the percentage of API breaking changes.
Finally, we ended up with two groups: top-25% (i.e., libraries
with the lowest percentage of breaking changes) and bottom-
25% (i.e., libraries with the highest percentage); each group
with 58 libraries. Figure 2 shows the distribution of breaking
changes in each group. As expected, the median percentage of

140

changes is low (0%) for top libraries and very high (73.75%)
for bottom ones. Table III shows the name of five top and
five bottom libraries. All top libraries in this table have no
breaking changes at all; by contrast, in the bottom libraries,
all detected API changes are classified as breaking changes.

0

73.75

0

25

50

75

100

Top Bottom

%
 B

re
ak

in
g

C
ha

ng
es

Fig. 2. Breaking changes distribution in top-25% and bottom-25% libraries.

TABLE III
EXAMPLE OF Top AND Bottom LIBRARIES ORDER BY NUMBER OF

BREAKING CHANGES.

Group Library Breaking
Changes

Top

CHRISBANES/ACTIONBAR-PULLTOREFRESH 0 (0%)
GOOGLEMAPS/ANDROID-MAPS-UTILS 0 (0%)
FACEBOOK/CONCEAL 0 (0%)
CHRISJENX/CALLIGRAPHY 0 (0%)
MIKEPENZ/ABOUTLIBRARIES 0 (0%)

Bottom

KYMJS/KJFRAMEFORANDROID 4 (100%)
GRAILS/GRAILS-CORE 5 (100%)
MONGODB/MONGO-HADOOP 5 (100%)
LIAOHUQIU/CUBE-SDK 19 (100%)
ZEROMQ/JEROMQ 23 (100%)

3. Extracting metrics and comparing libraries. We extracted
the metrics for both top and bottom libraries and then com-
pared the obtained values. First, we analyze the statistical
significance of the difference between both groups by applying
the Mann-Whitney test at p-value = 0.05. To show the effect
size of the difference between them, we compute Cliff’s Delta
(or d). Following the guidelines in [17]–[19], we interpret the
effect size values as small for 0.147 < d < 0.33, medium for
0.33 < d < 0.474, and large for d < 0.474.

IV. RESULTS

RQ1: What is the frequency of API breaking changes?

We analyze the frequency of changes for types, fields, and
methods between the two latest releases, i.e., diff(Rn,Rn−1),
of the 317 studied libraries. We identified at least one change in
235 libraries (74.13%). From this total, 198 libraries (62.46%)
have at least one breaking change, while 218 (92.77%) have at
least one non-breaking change. Table IV presents the number
of changes per API element (i.e., types, fields, and methods).

Considering all of them, 501,645 changes were identified, from
which 27.99% are breaking changes and 72.01% are non-
breaking changes. Methods are the API elements with more
changes, including breaking changes. Considering the 140,460
breaking changes, 27.81% are in methods.

TABLE IV
NUMBER OF API BREAKING AND NON-BREAKING CHANGES.

Element Total Breaking Change Non-Breaking Change

Types 61,897 11,712 (18.92%) 50,185 (81.08%)
Fields 66,953 25,044 (37.41%) 41,909 (62.59%)
Methods 372,795 103,704 (27.81%) 269,091 (72.19%)

All 501,645 140,460 (27.99%) 361,185 (72.01%)

To understand the stability of the studied libraries, Figure 3
presents the distribution of absolute and relative breaking
changes. A logarithmic scale is applied to absolute plots so
we can better visualize outlier libraries.
Absolute analysis. Figure 3(a) shows the absolute distribution
of the number of changes (breaking and non-breaking) per
library. Considering all API elements, the first quartile is 0,
the median is 22, and the third quartile is 285 changes. On
the median, types and fields have two changes while methods
have 17. The third quartile for types, fields, and methods is
29, 27, and 206 changes, respectively.

Figure 3(b) details the previous analysis by exploring the
absolute distribution of breaking changes per library. Consid-
ering all API elements, the first quartile is 0, the median is
4, and the third quartile is 75. In absolute terms, we note
that types and fields present similar distributions (median
equal to 0). However, outlier values are very different: we
observe a library with 11,816 breaking changes for fields,
and another one with 1,392 breaking changes for types. We
manually analyzed both cases. The first one happened in
the Android library MANUELPEINADO/FADINGACTIONBAR,
when the project structure faced a major change, as described
in the commit message: “Changed project structure so that all
subprojects are in the same root.”3 The second one happened
in the graph library NEO4J/NEO4J, when several changes were
inserted to improve its design. One example is found in the pull
request that removed the type SchemaRuleContent: “This
PR makes sure that all types of schema rules are properly
checked and simplifies duplicates checking by removal of
SchemaRuleContent.”4

Relative analysis. Figure 3(c) presents the distribution of
the relative number of breaking changes per library. For
all API elements, the first quartile is 0%, the median is
14.78%, and the third quartile is 43.35%. Moreover, we
found 17 libraries (5.35%) with 100% of breaking changes,
such as NETFLIX/ASTYANAX, NATHANMARZ/STORM, and
GRAILS/GRAILS-CORE. But in all these cases, the absolute
number of changes is also small (at most 23 changes in
NETFLIX/ASTYANAX).

3More details at: https://goo.gl/VHwzKI
4More details at: https://goo.gl/iUzTE8

141

22

2 2

17
10

1000

100000

All Types Fields Methods
(a)

AP

I C
ha

ng
es

 (l
og

 s
ca

le
)

4

0 0

2
10

100

1000

30000

All Types Fields Methods
(b)

Br

ea
ki

ng
 C

ha
ng

es
 (l

og
 s

ca
le

)

14.78

0 0

14

0

25

50

75

100

All Types Fields Methods
(c)

%
 B

re
ak

in
g

C
ha

ng
es

Fig. 3. Distribution of API changes for all elements, types, fields, and methods. (a) Absolute number of all changes, (b) absolute number of breaking changes,
and (c) relative number of breaking changes.

Summary: From the 501,645 analyzed API changes, we
observe a high rate of breaking changes (27.99%). On the
median, 14.78% of the API changes in a library break
contracts with clients; the higher ratio of breaking changes
occurs on methods.

RQ2: How do API breaking changes evolve over time?

To answer this second research question, we verify all
releases (from R1 to Rn) of the 317 studied libraries. The
goal is to analyze the frequency of breaking changes over time
and, thus, to investigate the impact of software evolution on
library stability. To accomplish that, we verify 9,329 releases
and summarize the frequency of breaking changes per year.
Because the third quartile of the studied libraries age is 5.2
years, we decided to analyze at most five years of their
evolution. In addition, due to our selection criteria discussed
in Section III-A, the studied libraries have at least one year.

Figure 4 presents the relative distribution of the means of
breaking changes per library and per year. Those with no
versions released in a given year were discarded. For each
library, we calculate the mean number of breaking changes in
each year, by considering only the releases in the year. In this
way, we generate distributions per library and per year. In the
first year of existence, 232 libraries released public versions.
The first quartile of the means is 16.65%; the median, 29.02%;
and the third quartile, 42.74%.

For breaking changes in releases during the second year,
the first quartile is 15.32%, the median is 31.46%, and the
third quartile is 47.72%. From the total, 212 libraries registered
at least one release during their second year. From the first
to the second year, we observe a light increase of 2.44% in
the median value. However, the Mann-Whitney test reveals no
statistical significant difference between both groups.

In the third year, 149 libraries were analyzed. The first
quartile, the median, and the third quartile are, respectively:
14.73%, 37.12%, and 50.75%. Comparing to the previous
years, the median is slightly higher, increasing 5.66% and
8.10% when compared to the second and first years, respec-

tively. Despite of that, the Mann-Whitney test does not show
a statistical significant difference between the three years.

In our dataset, 106 libraries have version released during
their fourth year. The quartile values are 25.33%, 45.16%,
and 59.76%, respectively. The frequency of breaking changes
increases by 8.04%, 13.70%, and 16.14% when compared to
the third, second, and first years, respectively. In this case,
the Mann-Whitney test reveals that this group is statistically
significant different from the three previous ones.

Finally, in the fifth year, 83 libraries have released versions.
The first quartile is 30.53%, the median is 49.14%, and the
third quartile is 62.80%. From the fifth to the fourth years, we
do not observe statistical significant difference.

Therefore, the historical analysis of the breaking changes
frequency reveal that they increase by 20% in five years
(median values). This may be explained by the fact that as
time passes, libraries tend to provide API elements that are
harder to manage and more likely to change.

Summary: The frequency of breaking changes increases
over time. Comparing the first to the fifth year, this number
increases by 20% (from 29.02% to 49.14%). This may occur
because as libraries evolve, they become larger and more
likely to change.

RQ3: What is the impact of API breaking changes in client
applications?

In this third research question, we investigate the impact of
the breaking changes reported in RQ1 on client applications.
For that, we analyze both the types with breaking changes and
the types declaring fields and methods with breaking changes.
The goal is to assess the potential impact of breaking changes
by analyzing import statements in client systems. As detailed
in Section III-C, our dataset of client applications has around
260K Java systems.

Considering all API elements, 140,460 breaking changes
were detected (see Table IV), referring to 16,291 types. From
such types, 1,290 (7.91%) potentially impacted at least one
client application, i.e., clients with at least one import to

142

29.02

0

25

50

75

100

1st Year

%
 B

re
ak

in
g

C
ha

ng
es

31.46

2nd Year

37.12

3rd Year

45.16

4th Year

49.14

5th Year

Fig. 4. Distribution of API breaking changes per year. The distribution values are the mean rate of changes in a year, considering the releases produced in
this year.

these types in our dataset. For the remaining types with
breaking changes, we did not find clients in the JAVALI/BOA
dataset; therefore, they were discarded. Figure 5 presents the
distribution of absolute and relative number of impacted clients
per library/type. A logarithmic scale is applied to absolute
plots to ensure outliers visualization.

Figure 5(a) presents the absolute distribution of the number
of impacted clients per library. The first quartile is equal
to 75 clients; the median, 349; and the third quartile is
2,245 clients. In this context, the top-3 libraries with more
clients are JUNIT-TEAM/JUNIT4, with 54,217 clients; SPRING-
PROJECTS/SPRING-FRAMEWORK, with 23,793 clients; and
GOOGLE/GUAVA, with 12,524 clients.

Figure 5(b) shows the absolute distribution of the number
of clients impacted per type with breaking change. The first
quartile, the median, and the third quartile are 10, 26 and
90.75 clients, respectively. Despite the low numbers regis-
tered by the quartiles, the top-3 types with more impacted
clients belong to well-known libraries: org.junit.Assert
(imported on 10,857 clients), junit.framework.Assert
(imported on 10,535 clients), and org.bukkit.plugin.-
java.JavaPlugin (imported on 8,005 clients).

Finally, Figure 5(c) details the relative distribution of
the impacted clients, i.e., number of clients impacted by
a breaking change in a given API divided by the total
number of clients of this API. The first quartile is 1%,
the median is 2.54%, and the third quartile is 13.10%.
The top-3 types with higher rates of breaking change im-
pact are: *.streaming.video.VideoQuality, from
FYHERTZ/LIBSTREAMING, with 100%; *.chronicle.-
Excerpt, from PETER-LAWREY/JAVACHRONICLE, also with
100%; and *.scene2d.ui.Label, from LIBGDX/LIBGDX,
with 99.64%. However, in all these three cases, the number
of clients of each type is also small (at most 280 clients in
LIBGDX/LIBGDX).

Therefore, the impact of breaking changes in terms of
impacted clients tends to be low (2.54%, on the median).
This may indicate that (i) library developers are careful before
inserting breaking changes on used types, or (ii) the changed
types are for internal usage only [20], [21]. However, we also
notice many outliers (123 types) with more than 32.03% of
clients impact. Table V lists the breaking changes with the
highest impact on clients.

TABLE V
TOP-10 BREAKING CHANGES WITH THE HIGHEST IMPACT ON CLIENTS.

Type Impact

*.streaming.video.VideoQuality 100.00%
*.chronicle.Excerpt 100.00%
com.badlogic.gdx.scenes.scene2d.ui.Label 99.64%
android.content.res.AssetManager 97.87%
*.mustachejava.DefaultMustacheFactory 96.47%
android.telephony.TelephonyManager 95.86%
com.android.volley.RequestQueue 93.52%
org.bukkit.plugin.java.JavaPlugin 93.45%
org.pegdown.PegDownProcessor 91.67%
android.widget.AbsListView 90.51%

Summary: 2.54% of the client applications are potentially
impacted by breaking changes, on the median. One possible
explanation is that developers may be careful to break
widely used types.

RQ4: What are the characteristics of libraries with high and
low frequency of breaking changes?

To analyze libraries with high and low percentage of break-
ing changes, we compare top and bottom libraries as described
in Section III-D. The purpose is to verify whether library
popularity, size, community, activity, and maturity impact the
frequency of breaking changes.

Table VI details the metrics related to each characteristic
and the respective p-values and d coefficients obtained for top
and bottom libraries. Metrics in bold have p-value < 0.05,
and d > 0.147, i.e., they are statistically significant different
with at least a small effect size in top and bottom libraries.
As can be observed in the table, the selected top and bottom
libraries are statistically significant different in 6 out of the 12
metrics. The effect size is small in three metrics (number of
watchers, number of API elements, and number of releases),
and medium in other three (number of watchers, number of
contributors, and average API elements per contributor). Next,
we analyze each group:

• Popularity. Libraries with higher measures for number
of watchers are on the bottom group, i.e., they have
higher values of breaking changes. Thus, our results
suggests that popular libraries (at least, in number of
watchers) are more likely to break compatibility. This
contradicts our initial conjecture, once we believed that

143

349

10

100

1000

10000

70000

Libraries
(a)

C

lie
nt

s
(lo

g
sc

al
e)

26

10

100

1000

10000

Types
(b)

Im

pa
ct

ed
 C

lie
nt

s
(lo

g
sc

al
e)

2.54
0

25

50

75

100

Types
(c)

%
 Im

pa
ct

ed
 C

lie
nt

s

Fig. 5. Impact of API breaking changes in client applications: (a) number of clients of APIs with breaking changes, (b) number of clients impacted by each
type with a breaking change, and (c) relative number of clients impacted by each type with a breaking change.

popular libraries would be more careful before inserting
breaking changes. In fact, based on these results, we
hypothesize that popular libraries have more pressure to
evolve, including the need to make design decisions that
lead to breaking changes.

• Size. Libraries with higher measures for number of API
elements are also on the bottom group. Indeed, libraries
with more API elements tend to be harder to maintain and
evolve, increasing the probability of breaking changes.

• Community. Libraries with higher measures for number of
contributors and average API elements per contributors
also appear on the bottom group. Thus, our results suggest
that libraries with more contributors tend to have more
breaking changes.

• Activity. Libraries with higher measures for number of
commits and number of releases are on the bottom group.
Thus, our results suggest that more code changes are
more likely to break compatibility.

• Maturity. Finally, we detected that there is no statistical
significant difference between top and bottom libraries
with respect to their age (in number of days).

Summary: Bottom libraries are statistically significantly
different from top ones in 6 out of 12 metrics. Libraries with
more contributors and more API elements per contributor
have more breaking changes, with medium effect size. Also,
the number of API elements, the number of commits, and
the number of releases affect breaking changes, with small
effect. Maturity, though, has no effect on breaking changes.

V. SUMMARY AND FINDINGS

1. Libraries often break backward compatibility. We show
that 27.99% of all API changes break backward compatibility.
On the median, the percentage of breaking changes per library
hits 14.78%. In this context, we observe that API breaking
changes are recurrent and occur in a relevant percentage. This
may occur due to several reasons, for example, (i) unawareness
of breaking change risks, (ii) development by naive or less

experienced programmers, or (iii) need to restructure the
library and, consequently, change the API elements. Therefore,
we point out the need for further investigation on reasons
developers break contracts with client applications.

2. Breaking changes frequency increases over time. Our
study shows that the percentage of breaking changes tends to
increase over time by a rate of 20% when comparing their first
and fifth years (from 29.02% to 49.14%). This result shows
that as time passes, libraries do not become more reliable and
stable, as expected. Thus, we suggest the adoption of historical
analysis by library developers to measure library stability;
this is also important to pressure these developers to avoid
compatibility faults. This analysis would also provide useful
information for client developers when reasoning whether to
depend or not on a library.

3. Most breaking changes do not have a massive impact on
clients. Despite the high number of verified breaking changes,
we observe that, on the median, only 2.54% of clients are
potentially impacted. This low percentage may indicate that
(i) library developers pay especial attention on the usage of
types before breaking contracts or (ii) the changed types are
for internal usage, i.e., not intended to be used by client
applications. However, the ratio of impacted clients increases
to 13% in a quarter of the studied libraries. Moreover, the
analysis of outlier values shows that this impact can be very
large, reaching 100% of clients in some cases. Based on that,
an impact analysis tool can be helpful for library developers
to support their decisions before changing highly used APIs.

4. Development and social coding measures are associated
with API breaking changes. We show that libraries with
higher frequency of breaking changes have specific project
characteristics. We found statistically significant higher values
for the following metrics: number of watchers, number of
API elements, number of contributors, average API elements
per contributor, number of commits and number of releases.
Thus, libraries with higher frequency of breaking changes are
larger, more popular, and more active. Moreover, notice that

144

TABLE VI
METRICS AND THEIR RESPECTIVE p-values AND d ON top AND bottom LIBRARIES. BOLD MEANS p-value < 0.05 (STATISTICALLY SIGNIFICANT

DIFFERENT) AND d > 0.147 (AT LEAST A SMALL EFFECT SIZE). DIRECTION: “↑” = top LIBRARIES HAVE SIGNIFICANTLY HIGHER VALUE ON THIS
METRIC. “↓” = bottom LIBRARIES HAVE SIGNIFICANTLY HIGHER VALUE ON THIS METRIC.

Dimension Metric p-value d-value Size Direction

Popularity
number of stars 0.490 0.272 small ↓
number of watchers 0.016 0.377 medium ↓
number of forks 0.679 0.247 small ↓

Size number of files 0.010 0.017 negligible ↓
number of API elements < 0.001 0.149 small ↓

Community
number of contributors 0.014 0.330 medium ↓
average files per contributor 0.454 0.192 small ↓
average API elements per contributor < 0.001 0.335 medium ↓

Activity
number of commits < 0.001 0.219 small ↓
number of releases 0.001 0.251 small ↓
average days per release 0.003 0.088 negligible ↑

Maturity age (in number of days) 0.350 0.215 small ↓

the relative measure on the workload of API elements per
contributor is also associated with high frequency of breaking
changes: the more API elements a contributor has to maintain,
the more unstable is likely to be the library. Thus, we suggest
the usage of relative development metrics (such as average
API elements per contributor) as a proxy to developers assess
the “health” of their libraries.

VI. THREATS TO VALIDITY

A. Construct Validity

Construct validity is related to whether the measurements
in the study reflect real-world situations.

Classification of Repositories. One possible threat of our study
is that repositories may have been incorrectly classified into
library and non-library. Non-library systems in our studied
dataset may bias the results obtained. However, an especial
attention was dedicated to this manual classification through
the analysis of each repository web page and documentation.

Historical Analysis. In our historical analysis, we consider the
first five years of each studied library which represents the
third quartile of their age (5.2 years). Therefore, this value can
be considered a representative threshold, although not covering
the entire life cycle of the studied libraries.

Impact Analysis. To calculate the impact of breaking changes,
we count the number of client applications that feature an
import statement to types that hold a breaking change. A
known threat of this decision relates to the impact of breaking
changes in fields and methods, since an import to their
enclosing type does not implies in real usage. However, this
measure at least represents the worst case scenario.

B. Internal Validity

Internal validity is related to uncontrolled aspects that may
affect the experimental results.

Parser Implementation. A possible threat is the possibility
of errors in the implementation of our API diff tool, which
identifies breaking and non-breaking changes in Java API

elements. However, to mitigate this threat, the implementation
of diff is largely based on a well-known Eclipse library: JDT.
Findings Validation. We paid special attention to the appropri-
ate use of statistical tests (i.e., Mann-Whitney test and Cliff’s
Delta effect size), specially when reporting the results in RQ4.
This reduces the possibility that these results are due to chance.
Association and Causation. In RQ4, we examined whether
there are metrics correlated with high and low frequency of
breaking changes. However, it is important to acknowledge
that correlation does not imply causation [22].

C. External Validity

External validity is related to the possibility to generalize
our results. We focused on 317 popular Java libraries hosted in
GitHub, the most used code repository nowadays. Therefore,
they are credible and representative case studies, with source
code easily accessible. In addition, our client applications
dataset has more than 260K Java systems. Despite these
observations, our findings—as usual in empirical software
engineering—cannot be generalized to other libraries, specif-
ically those implemented in other programming languages.
Moreover, we only consider syntactical breaking changes,
which result on compilation errors. Behavioral API changes
are outside the scope of this paper.

VII. RELATED WORK

API evolution and stability have been largely studied in
the literature. Many approaches were proposed to support
this activity and reduce its costs for client applications. Dig
and Johnson [14], for instance, advance the understanding of
API changes, providing basis for designing migration tools.
They define a catalog of breaking changes and non-breaking
changes, and, as a result, they found that 80% of the changes
that break client systems are refactorings. In this study, we
apply this catalog to investigate the frequency of breaking
changes between API versions.

Raemaekers et al. [3] present four stability metrics based
on method changes and removals. The authors investigate
their metrics behavior by performing a historical analysis of

145

stability and impact on 140 clients of the Apache Commons
Library. They focus on the clients history, observing the usage
frequency and updates in their Maven build files. By contrast,
in this work, we study the evolution of a larger set of libraries
and compute the impact of breaking changes in an ultra-large
dataset of client applications. Additionally, we identify a set of
characteristics related to development and social coding that
are associated with API breaking changes.

Jezek et al. [23] use a dataset of 109 Java programs and
564 program versions to analyze binary compatibility in the
context of OSGi-based systems5. They define a set of specific
changes that may lead to unexpected runtime behavior during
“hot upgrades”. In this context, the authors conclude that API
instability is a common phenomenon, and also that only in a
few cases it affects clients. In this work, we focus on source
code compatibility, analyzing syntactic changes on API code
(which represents the majority of breaking change scenarios).

Thung et al. [24] perform a case study to understand how
developers reason about and apply changes in three software
ecosystems: Eclipse, R/CRAN, and Node.js/npm. As a result,
the authors state the differences in practice, polices, and tools
applied when performing/avoiding a breaking change. They
conclude that in Eclipse developers do not break APIs; in
R/CRAN, they reach out affected clients; and in Node.js/npm,
they increase the major version number. We highlight that the
reasons pointed by the authors on why/how API developers
avoid breaking compatibility may explain the low impact of
breaking changes found in our experiments.

In the Android context, McDonnell et al. [25] investigate
API stability and adoption. The authors state that Android
APIs evolve faster than client migration. Linares-Vásquez [26]
analyze how the number of questions in StackOverflow in-
creases when API are changed. They show that Android
developers are more active when they face API modifications.

There are also studies in the context of API deprecation.
Robbes et al. [6] investigate the impact of deprecation in a
Smalltalk ecosystem. They find that some API deprecation
have large impact on client applications and that deprecation
messages usually have low quality. In the same ecosystem,
Hora et al. [7] study the impact of API replacement and
improvement messages. The results show that a large amount
of clients are affected by API changes but most of them do
not react. Raemaekers et al. [27] investigate deprecation tag
usage when studying the frequency of breaking changes on
major, minor and patch API versions. The authors observe that
methods are commonly deleted without applying deprecation
tags, and also that methods with deprecated tags are never
deleted. Recently, Brito et al. [8] measure the usage of
deprecation messages at a large-scale level and propose a tool
to recommend these messages.

To support client applications migrating between library
versions, some tools and techniques are proposed by the
literature. For example, Kim et al. [28], present a solution to
automatically infer rules from structural changes, computed

5http://www.osgi.org

from modifications on method signatures. Kim et al. [29]
propose LSDiff, a tool to compute differences between two
library versions. Nguyen et al. [30] propose LibSync, a
tool that uses graph-based techniques to support developers
migrating between library versions. Henkel and Diwan [9]
present CatchUp, an approach to capture and replay refac-
toring. Hora et al. [13] present apiwave, an approach to keep
track of API evolution by mining import statement changes.

Finally, Dagenais and Robillard [31] present an approach
that recommends API replacements based on library changes.
In contrast, Schafer et al. [32] propose to mine API usage
change rules based on client changes. In the same context,
Wu et al. [5] present an approach to produce evolution rules
based on call dependency as well as text similarity analyses.
Meng et al. [11] propose a history-based matching approach
to support library evolution.

Novelty: To the best of our knowledge, this work is the
largest empirical study investigating API breaking changes
and their impact on client applications. Moreover, it also
reveals development and social coding characteristics that
impact on the frequency of breaking changes.

VIII. CONCLUSION

This paper presented a large-scale empirical study about
API breaking changes. We applied historical and impact
analysis to assess: (i) the frequency of breaking changes, (ii)
the behavior of these changes over time, (iii) the impact on
client applications, and (iv) the characteristics of libraries with
high and low frequency of breaking changes. The study was
performed in the context of 317 real world Java libraries, 9K
releases, and 260K clients. Four research questions were in-
vestigated to support library/client developers in maintenance
activities. The lessons learned from our experiment results are:

1. Libraries often break backward compatibility. We show
that 27.99% of all API changes break backward compatibility.
On the median, 14.78% of the changes, per library, are
breaking changes.

2. Breaking changes frequency increase over time. Com-
paring the first and fifth years of the studied libraries, the
percentage of breaking changes increase 20% (from 29.02%
to 49.14%).

3. Most breaking changes do not have a massive impact on
clients. Despite the high number of breaking changes verified,
only 2.54% of clients are potentially impacted (on the median).
However, this ratio reaches 100% for outlier values.

4. Development and social coding measures are associated
with API breaking changes. We found that libraries with high
frequency of breaking changes are larger, more popular, and
more active.

As future work, we plan to extend this research to other
systems, ecosystems, and programming languages. We also
plan to analyze other API characteristics (e.g., repository
owners, library domain, etc). Another extension of our study
is an in-depth qualitative analysis to understand the reasons

146

why developers break API contracts. Finally, we intend to
implement a tool that may support API developers to assess
the impact of API breaking changes.

ACKNOWLEDGMENT

This research is supported by CNPq and FAPEMIG.

REFERENCES

[1] D. Konstantopoulos, J. Marien, M. Pinkerton, and E. Braude, “Best
principles in the design of shared software,” in 33rd International
Computer Software and Applications Conference (COMPSAC), 2009,
pp. 287–292.

[2] S. Moser and O. Nierstrasz, “The effect of object-oriented frameworks
on developer productivity,” Computer, vol. 29, no. 9, pp. 45–51, 1996.

[3] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in 28th International
Conference on Software Maintenance (ICSM), 2012, pp. 378–387.

[4] M. Reddy, API Design for C++. Morgan Kaufmann Publishers, 2011.
[5] W. Wu, Y.-G. Gueheneuc, G. Antoniol, and M. Kim, “Aura: a hybrid

approach to identify framework evolution,” in 32nd International Con-
ference on Software Engineering (ICSE), 2010, pp. 325–334.

[6] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers
react to API deprecation? The case of a Smalltalk ecosystem,” in 20th
International Symposium on the Foundations of Software Engineering
(FSE), 2012, pp. 1–11.

[7] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T. Va-
lente, “How do developers react to API evolution? The Pharo ecosystem
case,” in 31st IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2015, pp. 251–260.

[8] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate APIs with replacement messages? A large-scale analysis on
Java systems,” in 23rd International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2016, pp. 360–369.

[9] J. Henkel and A. Diwan, “Catchup!: capturing and replaying refactorings
to support API evolution,” in 27th International Conference on Software
Engineering (ICSE), 2005, pp. 274–283.

[10] C. Kingsum and D. Notkin, “Semi-automatic update of applications
in response to library changes,” in 12th International Conference on
Software Maintenance (ICSM), 1996, pp. 359–379.

[11] S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based matching
approach to identification of framework evolution,” in 34th International
Conference on Software Engineering (ICSE), 2012, pp. 353–363.

[12] A. Hora, N. Anquetil, S. Ducasse, and S. Allier, “Domain specific
warnings: are they any better?” in 28th International Conference on
Software Maintenance (ICSM), 2012, pp. 441–450.

[13] A. Hora and M. T. Valente, “apiwave: keeping track of API popularity
and migration,” in 31st International Conference on Software Mainte-
nance and Evolution (ICSME), 2015, pp. 321–323.

[14] D. Dig and R. Johnson, “How do APIs evolve? A story of refactoring,” in
22nd International Conference on Software Maintenance (ICSM), 2006,
pp. 83–107.

[15] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: a language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 35th International Conference on Software Engineering (ICSE), 2013,
pp. 422–431.

[16] ——, “Boa: ultra-large-scale software repository and source-code min-
ing,” Transactions on Software Engineering and Methodology, vol. 25,
no. 1, pp. 1–34, 2015.

[17] R. Grissom and J. Kim, “Effect sizes for research: a broad practical
approach,” Lawrence Erlbaum Associates Publishers, 2005.

[18] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the character-
istics of high-rated apps? A case study on free Android applications,” in
31st International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 301–310.

[19] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk, “API change and fault proneness: a
threat to the success of Android apps,” in 9th International Symposium
on the Foundations of Software Engineering (FSE), 2013, pp. 477–487.

[20] A. Hora, M. T. Valente, R. Robbes, and N. Anquetil, “When should
internal interfaces be promoted to public?” in 24th International Sym-
posium on the Foundations of Software Engineering (FSE), 2016, pp.
1–12.

[21] J. Businge, A. Serebrenik, and M. G. van den Brand, “Eclipse API
usage: the good and the bad,” Software Quality Journal, vol. 23, no. 1,
pp. 107–141, 2013.

[22] C. Couto, P. Pires, M. T. Valente, R. Bigonha, and N. Anquetil,
“Predicting software defects with causality tests,” Journal of Systems
and Software, vol. 93, pp. 24–41, 2014.

[23] K. Jezek, J. Dietrich, and P. Brada, “How Java APIs break–an empirical
study,” Information and Software Technology, vol. 65, no. C, pp. 129–
146, 2015.

[24] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an API:
cost negotiation and community values in three software ecosystems,”
in 24th Symposium on the Foundations of Software Engineering (FSE),
2016, pp. 1–12.

[25] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API
stability and adoption in the Android ecosystem,” in 29th International
Conference on Software Maintenance (ICSM), 2013, pp. 70–79.

[26] M. Linares-Vásquez, G. Bavota, M. D. Penta, R. Oliveto, and D. Poshy-
vanyk, “How do API changes trigger stack overflow discussions? A
study on the Android SDK,” in 22nd International Conference on
Program Comprehension (ICPC), 2014, pp. 83–94.

[27] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning ver-
sus breaking changes: A study of the Maven repository,” in 14th Working
Conference on Source Code Analysis and Manipulation (SCAM), 2014,
pp. 1–10.

[28] M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural
changes for matching across program versions,” in 29th International
Conference on Software Engineering (ICSE), 2007, pp. 333–343.

[29] M. Kim and D. Notkin, “Discovering and representing systematic code
changes,” in 31st International Conference on Software Engineering
(ICSE), 2009, pp. 309–319.

[30] H. A. Nguyen, T. T. Nguyen, J. Gary Wilson, A. T. Nguyen, M. Kim,
and T. N.Nguyen, “A graph-based approach to API usage adaptation,”
in International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), 2010, pp. 302–321.

[31] B. Dagenais and M. P. Robillard, “Recommending adaptive changes
for framework evolution,” in 30th International Conference on Software
Engineering (ICSE), 2008, pp. 481–490.

[32] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes
from instantiation code,” in 30th International Conference on Software
Engineering (ICSE), 2008, pp. 471–480.

147

