
APIDiff: Detecting API Breaking Changes
Aline Brito∗, Laerte Xavier∗, Andre Hora†, Marco Tulio Valente∗

∗ASERG Group, Department of Computer Science (DCC), Federal University of Minas Gerais, Brazil
{alinebrito, laertexavier, mtov}@dcc.ufmg.br

† Faculty of Computer Science (FACOM), Federal University of Mato Grosso do Sul, Brazil
hora@facom.ufms.br

Abstract—Libraries are commonly used to increase produc-
tivity. As most software systems, they evolve over time and
changes are required. However, this process may involve breaking
compatibility with previous versions, leading clients to fail. In
this context, it is important that libraries creators and clients
frequently assess API stability in order to better support their
maintenance practices. In this paper, we introduce APIDIFF, a
tool to identify API breaking and non-breaking changes between
two versions of a Java library. The tool detects changes on three
API elements: types, methods, and fields. We also report usage
scenarios of APIDIFF with four real-world Java libraries.

Index Terms—API Evolution, Breaking Changes, Mining Soft-
ware Repositories.

I. INTRODUCTION

Change is a common practice in software development.
Developers create, remove, and update software systems to
accommodate new features, fix bugs, and improve code qual-
ity. Nowadays, most modern systems rely on libraries1, which
are widely used by developers to increase productivity and
reuse well designed and tested component solutions [1]–[3].
Libraries provide functionalities via Application Programming
Interfaces (APIs), which are contracts used by clients to
communicate with these components [4]. In this context,
during software development, ideally, API creators should
strive to properly maintain these contracts, avoiding breaking
their clients.

However, the literature presents that
API contracts are commonly broken [5]–[7]. For example,
a recent study with over 300 Java libraries shows that API
creators often break backward compatibility [5]. In this
context, several approaches have been proposed to handle
API evolution, for instance, to detect refactoring actions [8],
to capture and replay performed refactorings [9], and to track
popularity and migration of APIs [10]. However, we still
lack approaches and tools to support API creators and clients
assessing possible breaking changes. Specifically, important
questions often arise after a new library release, for example:

• Are there API breaking changes in this version?
• Which changes may affect clients?
• How stable is this library?
The answers to these questions may motivate API creators

to write migration documents in order to help clients when
updating their applications or to identify and revert accidental
breaking changes. On the client side, one could assess the

1We use the term library to designate both frameworks and libraries.

evolution of an API, analyzing the amount of breaking changes
over time, to select more stable libraries to depend on.

To address these challenges, we propose APIDIFF, a tool
to identify breaking (and non-breaking) changes between
two versions of a Java library. The goal of APIDIFF is to
support both API creators and clients in their development
activities. The tool analyses libraries hosted on the distributed
version control system git, which is used by GitHub,
a popular repository with more than 74 million projects
and a community with more than 26 million developers
worldwide (on January, 2018). The tool analyses changes
in types, methods and fields, and it was already used in
previous studies of our research group [5], [11], [12].
APIDIFF reports several breaking changes (e.g., public field
removal, change of parameter type), as well as changes that
do not affect clients (e.g., type addition), together with 13
well-known refactoring types (e.g., method rename and move).

Structure of the paper. Section II describes the architecture
and features of APIDIFF. Section III presents usage scenarios
in four real-world Java libraries. Section IV presents the
limitations of our tool and Section V related work. Finally,
we conclude the paper in Section VI.

II. FEATURES AND ARCHITECTURE

A. Architecture

APIDIFF identifies breaking and non-breaking changes be-
tween versions of a Java library hosted on git repositories
in a fully automated way. It uses a similarity heuristic based
on static analysis to detect changes in API elements (i.e.,
types, methods, and fields). Figure 1 presents the high level
architecture of APIDIFF, which includes three major modules:
processing, refactoring, and analysis.

Fig. 1. APIDiff Architecture



Processing Module. This module receives as input the
metadata of the analyzed library. In Git Service, the project
is cloned from its repository, and a directed acyclic graph
(DAG) is created with the history of commits. Then, Visitor
Processor creates instances of the library. These instances are
passed as input to the Analysis Module.

Refactoring Module. This module detects refactoring actions
between two instances of a library. It is reused from REFDIFF,
a tool that detects 13 well-known refactoring operations [8].
REFDIFF algorithm finds changes in types, methods, and
fields, such as move or rename.

Analysis Module. This module detects the changes in the
library history. The final output of APIDIFF contains a list of
changes performed in types, methods, and fields, including
also commit metadata (e.g., author, commit hash, date) and
information about the change (e.g., element type and name).

B. Catalog of Changes

APIDIFF focuses on syntactic changes. We classify as Break-
ing Changes (BC) the changes performed in API elements
such as types, methods, and fields that may break client
applications. We exclude changes performed on deprecated
API elements since clients have been previously warned about
possible incompatibilities in such element.

Table I presents the catalog of BCs detected by APIDIFF
regarding types, methods, and fields. BCs in types and methods
include popular refactoring actions such as rename and move,
as well as critical ones such as removal. BCs in fields include,
for example, refactorings and changes in default values.

TABLE I
BREAKING CHANGES DETECTED BY APIDIFF

Element Breaking Changes (BC)

Type REMOVE TYPE, LOST VISIBILITY, CHANGE IN SUPER-
TYPE, ADD FINAL MODIFIER, REMOVE STATIC MODI-
FIER, RENAME TYPE, MOVE TYPE

Method REMOVE METHOD, LOST VISIBILITY, CHANGE IN RE-
TURN TYPE, CHANGE IN PARAMETER LIST, CHANGE
IN EXCEPTION LIST, ADD FINAL MODIFIER, REMOVE
STATIC MODIFIER, MOVE METHOD, RENAME METHOD,
PUSH DOWN METHOD, INLINE METHOD

Field REMOVE FIELD, LOST VISIBILITY, CHANGE IN FIELD
TYPE, CHANGE IN FIELD DEFAULT VALUE, ADD FINAL
MODIFIER, MOVE FIELD, PUSH DOWN FIELD

Changes that do not break clients are classified as Non-
breaking Changes (NBC), as presented in Table II. Common
NBCs in this context involve, for example, type addition
and visibility modifier change to public/protected (i.e., gain
of visibility). Changes on deprecated API elements are also
classified as NBCs.

C. Features

In this section we describe the main features and
functionalities provided by APIDIFF.

TABLE II
NON-BREAKING CHANGES DETECTED BY APIDIFF

Element Non-Breaking Changes (NBC)

Type ADD TYPE, GAIN VISIBILITY, REMOVE FINAL MODI-
FIER, ADD STATIC MODIFIER, ADD SUPERTYPE, EX-
TRACT SUPERTYPE, DEPRECIATE TYPE

Method ADD METHOD, PULL UP METHOD, GAIN VISIBILITY,
REMOVE FINAL MODIFIER, ADD STATIC MODIFIER, DE-
PRECIATE METHOD, EXTRACT METHOD

Field ADD FIELD, PULL UP FIELD, GAIN VISIBILITY, RE-
MOVE FINAL MODIFIER, DEPRECIATE FIELD

Detecting changes in version histories. In this functionality, it
is possible to analyze changes performed in several commits
of a given project. For example, we can select one branch or
analyze all branches. The input includes the project path, git
url, and the branch name (for all branches the name is not
necessary). API creators and clients can use this feature to
assess the stability of their libraries.

Detecting changes in specific commit. In this feature, it is
possible to analyze changes performed in a specific commit.
The input includes the project path, git url, and the commit
to be inspected. For example, API creators can use this
functionality to analyze their commits or to evaluate pull
requests, detecting accidental breaking changes performed by
contributors.

Fetching new commits. By using this feature, the tool fetches
new commits from a repository. The input includes the
project path and git url. API creators may benefit from this
functionality by monitoring changes in their own repositories,
during a time interval. For example, a library developer
can clone and track a repository, and then use APIDIFF to
detect changes in new commits. In this way, if contributors
introduce breaking changes, he is notified shortly afterwards
to accept the change or revert it.

Filtering Packages. For all provided features, it is possible
to filter in or filter out packages according to their names,
considering keywords such as internal, test, experimental,
and example. In this way, we can create a proxy to
detect changes in internal implementations or to eliminate
from the analysis source code that is not intended to be public.

Reading and writing a CSV file. Users can customize the
output of APIDIFF, reporting the detected changes in a CSV
file. They can also read the input from CSV files.

III. USAGE SCENARIOS

In this section, we present four usage scenarios for APID-
IFF. In the first scenario, we investigate API changes con-
sidering the complete history of two popular Android li-
braries: PHILJAY/MPANDROIDCHART2 (a chart view library) and
BUMPTECH/GLIDE3 (an image loading and caching library). In

2https://github.com/PhilJay/MPAndroidChart
3https://github.com/bumptech/glide



the second scenario, we present the most popular BCs and
NBCs detected in the history of PHILJAY/MPANDROIDCHART.
Then, in a third example, we present the changes over time
in SQUARE/PICASSO4 (a downloading and caching library for
Android). Lastly, we detect changes in a specific commit of
MOCKITO/MOCKITO5 (a framework to implement unit tests).

A. Most Common Elements with Changes
In this first example, we assess the whole commit history

of the PHILJAY/MPANDROIDCHART and BUMPTECH/GLIDE.
The results refer to the master branch and to the elements
documented with JavaDoc. Figure 2 presents the piece of
code necessary to run this functionality in APIDIFF. The input
includes the project path, git url, and branch name.

APIDiff diff = new APIDiff(
“bumptech/glide”,
“https://github.com/bumptech/glide.git”);

Result result = 
diff.detectChangeAllHistory(“master”, Classifier.API);

Fig. 2. Detecting changes in BUMPTECH/GLIDE

APIDIFF detected 1,401 BCs in the history of
PHILJAY/MPANDROIDCHART and 1,599 BCs in BUMPTECH/GLIDE

history. The most common BCs are performed at
method level. The tool also detected 1,662 NBCs
in PHILJAY/MPANDROIDCHART and 1,392 NBCs in
BUMPTECH/GLIDE histories. Among the detected NBCs,
methods are also the most modified elements. Figures 3
and 4 present the distribution of BCs and NBCs over types,
methods, and fields in these two libraries.

15%

63%

22%Field

Method

Type

0 250 500 750
Occurrences

(a) PHILJAY/MPANDROIDCHART

6%

56%

38%

Field

Method

Type

0 250 500 750
Occurrences

(b) BUMPTECH/GLIDE
Fig. 3. Breaking Changes in types, methods or fields

Therefore, using this feature, library creators may detect
which API elements break more frequently. Consequently,
they can discover the elements that are more affected by
API instability. On the client side, this feature may support
checking the frequency of breaking changes in a library. In
other words, the results can help clients to compare similar
libraries and select the most stable and well-maintained one.

4https://github.com/square/picasso
5https://github.com/mockito/mockito

14%

75%

11%

Field

Method

Type

0 250 500 750 1000 1250
Occurrences

(a) PHILJAY/MPANDROIDCHART

4%

66%

30%

Field

Method

Type

0 250 500 750 1000 1250
Occurrences

(b) BUMPTECH/GLIDE
Fig. 4. Non-Breaking Changes (NBCs)

B. Most Popular Changes

This example presents the most popular changes performed
in PHILJAY/MPANDROIDCHART as detected by APIDIFF (Figure
5). The results refer to the master branch and to the elements
documented with JavaDoc. Among the 1,401 BCs, 44% (613)
are related to method removal and 12% (171) involve field
removal. The other three changes involve rename methods,
changes in return type, and changes in field default value,
with 6% of occurrences each.

6%

6%

6%

12%

44%

Change in Field Default Value

Change in Return Type

Rename Method

Remove Field

Remove Method

0 200 400 600
Occurrences

Fig. 5. Top-5 Breaking Changes in PHILJAY/MPANDROIDCHART

Furthermore, APIDIFF detected 1,662 NBCs. As presented
in Figure 6, the most popular NBCs involve adding elements:
methods (1,115 occurrences, 67%), fields (186 occurrences,
11%), and types (151 occurrences, 9%).

1%

6%

9%

11%

67%

Gain Visibility in Field

Pull Up Method

Add Type

Add Field

Add Method

0 200 400 600 800 1000 1200
Occurrences

Fig. 6. Top-5 Non-breaking Changes in PHILJAY/MPANDROIDCHART

C. API Changes Over Time

In this example, we use APIDIFF to detect changes in
the history of SQUARE/PICASSO. The results include changes
performed in the master branch and in JavaDoc elements.



●●

●●

●●

●

●
●

●
●●

●

●

●

●

●● ●● ●

●

●● ●● ●

●

●● ●

●

●

●

●● ●● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●● ●● ●● ●● ●● ●● ●● ●

●

●
●

●● ●● ●● ●● ●● ●● ●● ●● ●● ●

●

●●

●

●

●●
●● ●● ●● ●●

●●
●● ●● ●● ●● ●●0

2
4
6
8

10
12
14

2013 2014 2015 2016 2017

C
ha

ng
es

● ●BC NBC

Fig. 7. BCs and NBCs Over Time in SQUARE/PICASSO:

Figure 7 presents the distribution of changes since 2013
(when the repository was created) until 2017. The first two
years were more unstable, including many BCs (red line) and
also NBCs (blue line). By contrast, APIDIFF detected fewer
changes after 2015, showing that the latest versions had little
impact on clients, providing more stable APIs.

D. Changes at Commit

This last example focuses on a specific commit of the
MOCKITO/MOCKITO framework. Figure 8 shows the piece of
code in APIDIFF to detect changes in a given commit.

APIDiff diff = new APIDiff(
“mockito/mockito”,
“https://github.com/mockito/mockito.git”);

Result result = 
diff.detectChangeAtCommit(

"4ad5fdc14ca4b979155d10dcea0182c82380aefa",
Classifier.API);

Fig. 8. Detecting Changes in a Specific Commit

The input includes the project path, git url, and the commit
hash. In this case, APIDIFF detected the addition of a method,
as presented in Figure 9.

Change: Addition Method

Description: Method answersWithDelay(long, Answer<T>)
added in class org.mockito.AdditionalAnswers

Fig. 9. Addition method detected by APIDIFF

Therefore, library creators may use this feature to analyze
a commit and detect accidental changes that may harm client
applications. In GitHub, for example, library creators could
automatically analyze pull requests and check whether there
are breaking changes in contributions.

IV. LIMITATIONS

Breaking changes detected by APIDIFF do not necessarily
have an impact on clients applications. For example, the
modified API element may be a public low level or internal

API, without any usage by clients. Furthermore, the results
may include false positives, for example, due to casting.

V. RELATED WORK AND TOOLS

We organized this section in two topics: (a) studies on tools
and approaches to handle API evolution and migration, and
(b) studies on API evolution and breaking changes.

A. API Changes Tools

Several tools have been proposed to deal with the impact of
software evolution. For example, Dagenais and Robillard [13]
present SemDiff, a tool that suggests replacements for client
systems based on changes in their own framework code. Kim
and Notkin [14] introduce Logical Structural Diff (LSdiff ),
which computes differences between two versions of a system.
Hora et al. [10] present apiwave, which focuses on library mi-
gration. Wu et al. [15] present AURA (AUtomatic change Rule
Assistant), which generates automatic change rules, helping
developers migrating to new releases. Xing and Stroulia [16]
present Diff-CatchUp, which recommends features to replace
an obsolete API implementation. Additionally, the same au-
thors present UMLDiff, which detects structural changes be-
tween two version of a software system [17] and that is
implemented in the JDEvAn tool, an Eclipe Plugin. However,
UMLDiff does not focus on non-breaking or breaking changes
at API level. For example, it does not verify deprecated
elements or implementations in an internal package.

Silva et al. [8] present REFDIFF, an approach to detect refac-
torings between two versions of a git repository. REFDIFF it-
self does not detect other changes (i.e., addition or removal
of API elements, deprecation operations, changes in visibility
modifiers, etc) nor report whether the structure has JavaDoc
or deprecation annotations. Therefore, we integrated REFDIFF
with our tool, and its output is merged with the changes
detected by APIDIFF. Still in the context of refactoring, Henkel
and Diwan [9] present CatchUp, an approach that captures and
replays performed refactorings.

B. Studies on API Evolution

In previous work [5], we investigate breaking changes per-
formed in 317 real-world Java libraries on GitHub. The results
include 9K releases and show that library owners frequently



break contracts over time. However, by using the language
and infrastructure BOA [18], they report that few clients are
impacted by these changes. In another work [11], we show that
breaking changes are mainly motivated by the implementation
of new features, to simplify API, and to improve maintain-
ability. Bogart et al. [6] conducted a study involving three
ecosystems: Eclipse, R/CRAN, and Node.js/npm. They inves-
tigate how developers manage and negotiate breaking changes,
reporting answers from key developers in each ecosystem.

Dig and Johnson [7] also investigate the reasons behind API
changes, studying five frameworks. They report that more than
80% of the changes involve refactorings. In fact, refactoring
operations is a common practice in software evolution [19].
APIDIFF catalog includes some breaking changes from Dig
and Johnson [7] study (e.g., move and remove method), and
adds new changes (e.g., change in access modifier and final
modifier). However, APIDIFF focuses on syntactic changes.
Behavior breaking changes are studied in another work [20].

Some studies investigate the usage of internal APIs, i.e.,
details of implementation that should not be used by system
clients. Mastrangelo et al. [21] report that clients frequently
use internal APIs. This study focused on the internal interface
sun.misc.Unsafe provided by JDK. Businge et al. [22],
[23] also report the usage of internal APIs in Eclipse plugins.
Additionally, the same authors investigated the reasons why
internal API are used by client systems [24]. In this context,
Hora et al. [25] detected that some internal APIs are likely to
be promoted to public.

VI. CONCLUSION

In this paper, we introduced APIDIFF, a tool to detect
changes in API versions. Our tool includes a combination of
similarity heuristics and static analysis of Java source code to
detect API breaking and non-breaking changes. The changes
include removal and addition of API elements, 13 well-known
refactoring operations, and also changes in visibility, static and
final modifiers, exceptions, field default values, superclasses,
and deprecated APIs. As an additional contribution, we made
the source code of APIDIFF publicly available on GitHub.6

As future work, we plan to assess the precision of APIDIFF
with real-world Java libraries. We also plan to improve the
tool to support other popular languages. Finally, we plan to
provide a new feature to analyze changes at release level.

ACKNOWLEDGMENTS

This work is supported by FAPEMIG and CNPq.

REFERENCES

[1] S. Moser and O. Nierstrasz, “The effect of object-oriented frameworks
on developer productivity,” Computer, vol. 29, no. 9, pp. 45–51, 1996.

[2] D. Konstantopoulos, J. Marien, M. Pinkerton, and E. Braude, “Best
principles in the design of shared software,” in 33rd International
Computer Software and Applications Conference (COMPSAC), pp. 287–
292, 2009.

[3] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in 28th International
Conference on Software Maintenance (ICSM), pp. 378–387, 2012.

6https://github.com/aserg-ufmg/apidiff

[4] M. Reddy, API Design for C++. Morgan Kaufmann Publishers, 2011.
[5] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and

impact analysis of API breaking changes: A large scale study,” in
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 138–147, 2017.

[6] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break
an API: cost negotiation and community values in three software
ecosystems,” in 24th International Symposium on the Foundations of
Software Engineering (FSE), pp. 109–120, 2016.

[7] D. Dig and R. Johnson, “How do APIs evolve? a story of refactoring,”
Journal of Software Maintenance and Evolution (JSME), vol. 18, no. 2,
pp. 83–107, 2006.

[8] D. Silva and M. T. Valente, “RefDiff: Detecting refactorings in version
histories,” in 14th International Conference on Mining Software Repos-
itories (MSR), pp. 1–11, 2017.

[9] J. Henkel and A. Diwan, “Catchup!: Capturing and replaying refactor-
ings to support API evolution,” in 27th International Conference on
Software Engineering (ICSE), pp. 274–283, 2005.

[10] A. Hora and M. T. Valente, “apiwave: Keeping track of API popularity
and migration,” in 31st IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 321–323, 2015.

[11] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how Java
developers break APIs,” in 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 1–11, 2018.

[12] L. Xavier, A. Hora, and M. T. Valente, “Why do we break APIs? first
answers from developers,” in 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 392–396, 2017.

[13] B. Dagenais and M. P. Robillard, “Recommending adaptive changes
for framework evolution,” in 30th International Conference on Software
Engineering (ICSE), pp. 481–490, 2008.

[14] M. Kim and D. Notkin, “Discovering and representing systematic code
changes,” in 31st International Conference on Software Engineering
(ICSE), pp. 309–319, 2009.

[15] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: A hybrid
approach to identify framework evolution,” 32nd International Confer-
ence on Software Engineering (ICSE), pp. 325–334, 2010.

[16] Z. Xing and E. Stroulia, “API-evolution support with Diff-CatchUp,”
IEEE Transactions on Software Engineering, vol. 33, no. 12, pp. 818–
836, 2007.

[17] Z. Xing and E. Stroulia, “UMLDiff: An algorithm for object-oriented
design differencing,” in 20th International Conference on Automated
Software Engineering (ASE), pp. 54–65, 2005.

[18] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 35th International Conference on Software Engineering (ICSE),
pp. 422–431, 2013.

[19] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confes-
sions of GitHub contributors,” in 24th International Symposium on the
Foundations of Software Engineering (FSE), pp. 858–870, 2016.

[20] S. Mostafa, R. Rodriguez, and X. Wang, “Experience paper: a study
on behavioral backward incompatibilities of Java software libraries,” in
26th International Symposium on Software Testing and Analysis (ISSTA),
pp. 215–225, 2017.

[21] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom, “Use at your own risk: The Java unsafe API in the wild,”
in 30th International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pp. 695–710, 2015.

[22] J. Businge, A. Serebrenik, and M. van den Brand, “Survival of Eclipse
third-party plug-ins,” in 28th IEEE International Conference on Software
Maintenance (ICSM), pp. 368–377, 2012.

[23] J. Businge, A. Serebrenik, and M. G. J. van den Brand, “Eclipse API
usage: the good and the bad,” Software Quality Journal, vol. 23, no. 1,
pp. 107–141, 2015.

[24] J. Businge, A. Serebrenik, and M. van den Brand, “Analyzing the Eclipse
API usage: Putting the developer in the loop,” in 17th European Confer-
ence on Software Maintenance and Reengineering (CSMR), pp. 37–46,
2013.

[25] A. Hora, M. T. Valente, R. Robbes, and N. Anquetil, “When should
internal interfaces be promoted to public?,” in 24th International Sym-
posium on the Foundations of Software Engineering (FSE), pp. 280–291,
2016.


