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Abstract—Modern software development depends on APIs to
reuse code and increase productivity. As most software systems,
these libraries and frameworks also evolve, which may break
existing clients. However, the main reasons to introduce breaking
changes in APIs are unclear. Therefore, in this paper, we report
the results of an almost 4-month long field study with the
developers of 400 popular Java libraries and frameworks. We
configured an infrastructure to observe all changes in these
libraries and to detect breaking changes shortly after their
introduction in the code. After identifying breaking changes,
we asked the developers to explain the reasons behind their
decision to change the APIs. During the study, we identified 59
breaking changes, confirmed by the developers of 19 projects.
By analyzing the developers’ answers, we report that breaking
changes are mostly motivated by the need to implement new
features, by the desire to make the APIs simpler and with
fewer elements, and to improve maintainability. We conclude
by providing suggestions to language designers, tool builders,
software engineering researchers and API developers.

Index Terms—API Evolution, Breaking Changes, Field Study.

I. INTRODUCTION

Software libraries are commonly used nowadays to support
development, providing source code reuse, improving produc-
tivity, and, consequently, decreasing costs [1]–[3]. For exam-
ple, there are more than 200K libraries registered on Maven’s
central repository, a popular package management for Java.
They cover distinct scenarios, from mobile and web program-
ming to math and statistical analysis. These functionalities
are provided to client systems via Application Programming
Interfaces (APIs), which are contracts that clients rely on [4].
In principle, APIs should be stable and backward-compatible
when evolving, so that clients can confidently rely on them.

In practice, however, the literature shows the opposite: APIs
are often unstable and backward-incompatible (e.g., [5]–[8]).
A recent study points that 28% out of 500K API changes break
backward compatibility, that is, they may cause side effects
on client systems [9]. API breaking changes comprise from
simple modifications such as the change of a method signature
or return type to more critical and dangerous ones such as the
removal of a public element. In this context, one important
question is not completely answered in the literature: despite
being recognized as a programming practice that may harm
client applications, why do developers break APIs? Better
understanding these reasons may support the development of
new language features and software engineering approaches
and tools to improve library maintenance practices.

In this paper, we study the motivations driving API breaking
changes from the perspective of library developers. By mining
daily commits of relevant libraries, we looked for API breaking
changes, and, when detected, we sent emails to developers
to better understand the reasons behind the changes, the
real impact on client applications, and the practices adopted
to alleviate the breaking changes. We also characterize the
most common program transformations that lead to breaking
changes. Specifically, we investigate four research questions:

1) How often do changes impact clients? 39% of the
changes investigated in the study may have an impact
on clients. However, a minor migration effort is required
in most cases, according to the surveyed developers.

2) Why do developers break APIs? We identified three
major motivations to break APIs, including changes
to support new features, to simplify the APIs, and to
improve maintainability.

3) Why don’t developers deprecate broken APIs? Most
developers mentioned the increase on maintainability
effort as the reason for not deprecating broken APIs.

4) How do developers document breaking changes? Most
developers plan to document the detected breaking
changes, mainly using release notes and changelogs.

By following a firehouse interview method [10], we moni-
tored 400 real world Java libraries and frameworks hosted on
GitHub during 116 days. During this period, we detected 282
possible breaking changes, sent 102 emails, and received 56
responses, which represents a response rate of 55%. With the
study, we provide the following contributions: (1) to the best
of our knowledge, this is the first large-scale field study that
reveals the reasons of concrete breaking changes introduced by
practitioners in the source code of popular Java APIs; (2) we
show how breaking changes are introduced in the source code,
including the most common program transformations used to
break APIs; (3) we provide an extensive list of implications of
our study, including implications to language designers, tool
builders, software engineering researchers, and practitioners.

Structure of the paper. Section II introduces the tool and ap-
proach used to detect breaking changes. Section III details our
experiment design, while Section IV presents our results. We
discuss the implications of the study in Section V. Section VI
states threats to validity and Section VII presents related work.
Finally, we conclude the paper in Section VIII.



II. APIDIFF TOOL

To detect breaking changes, we use a tool named APIDIFF,
which was implemented and used by Xavier et al. [9] in a
study about the frequency and impact of breaking changes.
Essentially, APIDIFF compares two versions of a library and
lists all changes in the signature of public methods, construc-
tors, fields, annotations, and enums. In this paper, the results
produced by APIDIFF are named Breaking Change Candidates
(BCC). The reason is that changes in public elements—as
identified by APIDIFF—do not necessarily have an impact on
API clients. For example, the changed elements may denote
internal or low-level services, which are designed only for
local usage. To clarify this question, we conducted a survey
with API developers, to confirm whether the BCCs detected
by APIDIFF are indeed breaking changes (see Section III).

Definition: Changes detected by APIDIFF in public API
elements are named Breaking Change Candidates (BCC).

Table I lists the BCCs detected by APIDIFF. These changes
refer to the following API elements: types, methods, or fields.
BCCs on types include, for example, drastic changes, like the
removal of a type from the code. But subtle changes in public
types are also detected, including changing a type visibility
from public to another modifier, changing the supertype of a
type, adding a final modifier to a type (to disable inheritance),
or removing the static modifier of an inner class. Besides the
changes detected to types, BCCs in methods include changes
in return types or parameter lists. Changes in fields include,
for example, changing the default value of a field. Figure 1
shows an example of BCC detected by APIDIFF in a method of
SQUARE/PICASSO (an image downloading library). According
to the developer who performed this change, he removed the
parameter Context from method with to simplify the API,
since this parameter can be retrieved in other ways.

TABLE I
BCCS DETECTED BY APIDIFF

Element BCC

Type REMOVE CLASS, CHANGE IN ACCESS MODIFIERS,
CHANGE IN SUPERTYPE, ADD FINAL MODIFIER, RE-
MOVE STATIC MODIFIER

Method REMOVE METHOD, CHANGE IN ACCESS MODIFIERS,
CHANGE IN RETURN TYPE, CHANGE IN PARAMETER
LIST, CHANGE IN EXCEPTION LIST, ADD FINAL MODI-
FIER, REMOVE STATIC MODIFIER

Field REMOVE FIELD, CHANGE IN ACCESS MODIFIERS,
CHANGE IN FIELD TYPE, CHANGE IN FIELD DEFAULT
VALUE, ADD FINAL MODIFIER

As implemented by the current APIDIFF version, changes
in deprecated API elements (i.e., elements annotated with
@Deprecated) are not BCCs. The rationale is that clients
of these elements were previously warned that they are no
longer supported, and, therefore, subjected to changes or even
to removal. Finally, APIDIFF warns if a BCC is performed in an
experimental or internal API [11], [12]. For this purpose, the
tool checks if the qualified name of the changed API element

public static Picasso with(Context) {
    //...
}be
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Fig. 1. Example of BCC detected by APIDIFF at method level

includes a package named internal, as in this example:
io.reactivex.internal.util.ExceptionHelper. With this
warning, the goal is to alert users that the identified BCC is
probably a false breaking change.

As presented in Table I, APIDIFF does not use the term
refactoring to name BCCs. For example, the RENAME of an
API element A to B is identified as the removal of the element
A from the code. Similarly, a MOVE CLASS/METHOD/FIELD
from location C to a new location D is identified as the
removal of the element from its original location C. In order to
use the most appropriate names to identify these operations,
we manually inspected the BCCs detected by APIDIFF. For
each commit with a BCC, we analyzed its textual diff, as
generated by GitHub. The detection of refactorings performed
on classes (RENAME/MOVE CLASS) was facilitated because
these operations are automatically indicated in the textual
diff computed by GitHub. For example, Figure 2 shows a
screenshot of a diff in FACEBOOK/FRESCO that includes a
MOVE CLASS.1 At the top of the figure, there is an indi-
cation that class DrawableFactory was moved from pack-
age com.facebook.drawee.backends.pipeline to package
com.facebook.imagepipeline.drawable. By contrast, to
detect RENAME/MOVE METHOD/FIELD we needed to perform
a detailed inspection on the diffs results.

III. STUDY DESIGN

A. Selection of the Java Libraries

First, we selected the top-2,000 most popular Java projects
on GitHub, ordered by number of stars and that not are forks
(on March, 2017). We used this criteria because stars is a
common and easily accessible proxy for the popularity of
GitHub projects [13]. Next, we discarded projects that do
not have the following keywords in their short description:
library(ies), API(s), framework(s). We also manually removed
deprecated projects from this list, i.e., projects that have
deprecated in their short description, to focus the study on
active repositories. These steps resulted in a list of 449
projects. Then, we manually inspected the documentation,
wiki, and web pages of these projects to guarantee they are
libraries or similar software. As a result, we removed 49
projects. For example, GOOGLESAMPLES/ANDROID-VISION
has the following short description: Sample code for the
Android Mobile Vision API. Despite having the keyword API

1https://github.com/facebook/fresco/commit/f6fe6c3



Fig. 2. Screenshot of a textual diff produced by GitHub in FACEBOOK/FRESCO. A MOVE CLASS is indicated in the header line.
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Fig. 3. Distribution of number of stars, age, number of contributors, and number of commits of the initial 400 Libraries and of the 61 Libraries with BCCs

in the description, this repository is neither a library nor
a framework, but just a tutorial about a specific Android
API. Thus, the final list consists of 400 GitHub projects,
including well-known systems such as JUNIT-TEAM/JUNIT4 (a
testing framework), SQUARE/PICASSO (an image downloading
and caching framework), and GOOGLE/GUICE (a dependency
injection library).

B. Detecting BCCs

During 116 days, from May 8th to August 31th, 2017,
we monitored the commits of the selected projects to detect
BCCs. To start the study, on May 8th, 2017 we cloned the
selected 400 libraries and frameworks to a local repository.
Next, on each work day, we ran scripts that use the git fetch
operation to retrieve the new commits of each repository. We
discarded a new commit when it did not modify Java files.
Furthermore, on Git, developers can work locally in a change
and just submit the new revision (via a git push) after a
while. Therefore, we also discarded commits with more than
seven days, to focus the study on recent changes, which is
important to increase the chances of receiving feedback from
developers (see Section III-C). We also discarded commits
representing merges because these commits usually do not
include new features; moreover, merges have two or more
parent commits, which leads to a duplication of the BCCs

identified by APIDIFF [9], [14]. Finally, we manually discarded
commits in branches that only contain test code.

APIDIFF identified 282 BCCs in 110 commits, distributed
over 61 projects (47% of the set of 130 libraries and frame-
works with commits detected during the study period). Fig-
ure 3 presents the distribution of number of stars, age (in
years), number of contributors, and number of commits of
the initial selection of 400 libraries and frameworks (labeled
as Libraries) and of the 61 projects with BCCs (labeled as
Libraries with BCCs). The distributions of Libraries with
BCCs are statistically different from the initial selection of
400 libraries in age, number of contributors, and number of
commits, but not regarding the number of stars (according to
Mann-Whitney U Test, p-value ≤ 5%). To show the effect
size of this difference, we computed Cliff’s delta (or d) [15].
The effect is medium for age, and large for number of
contributors and commits. In other words, libraries with BCCs
are moderately older (3 vs 2.5 years, median measures), but
have more contributors (40 vs 9) and more commits (1,378
vs 198.5) than the original list of libraries selected for the
study. Finally, Figure 4 shows the distribution of BCCs per
project, considering only Libraries with BCCs. The median
is two BCCs per project and the system with the highest
number of BCCs is ROBOLECTRIC/ROBOLECTRIC, with 38
BCCs (including 35 BCCs where public API elements were
changed to protected visibility).
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Fig. 4. BCCs per project

C. Contacting the Developers

Among the 282 BCCs considered in the study, 268 (95%)
were detected in commits that contain a public email. There-
fore, on each day of the study, after detecting such BCCs, we
contacted the respective developers. In the emails sent to them
(see a template in Figure 5), we added a link to the GitHub
commit and a description of the BCC. Then, we asked four
questions. With the first question, we intended to shed light
on the real motivation behind the detected changes. With the
second question, we intended to confirm whether the BCC
detected by APIDIFF can break existing clients. With the third
question, our interest was to understand why the developers
have not deprecated the API element where the BCC was
detected. Finally, with the last question, our interest was to
investigate how often developers document BCCs.

Dear [developer name],

I am a researcher working with API usability and evolution. In my
research, I am studying the API of [repository/project].

I found that you performed the following changes in this project:

[BCCs list] and [commit links]

Could you please answer the following questions:

1. Why did you perform these changes?

2. Do you agree these changes can break clients? If yes, could you
quantify the amount of work to use the new implementation?

3. Why didn’t you deprecate the old implementation?

4. Do you plan to document the changes? If yes, how?

Fig. 5. Mail to the authors of commits with BCCs detected by APIDIFF

We sent only one email to each developer. Specifically,
whenever we detected BCCs by the same developer, but in
different commits, we only sent one email to him, about the
BCC detected in the first commit. In this way, we reduced
the chances that developers perceived our emails as spam. It
is also important to mention that before sending each email
we inspected the respective commit description to guarantee
it did not include an answer to the proposed questions. In the
case of six commits, we found answers to the first question
(why did you perform these changes?). As an example, we
have the following commit description:

Lock down assorted APIs that aren’t meant to be used
publicly subtyped. (D23, Add Final Modifier)

In this message, the developer mentions he is adding a
final modifier to classes that must not be extended by API
clients. We also sent a brief email to the authors of these six
commits, just asking them to confirm that the detected BCCs
can break existing clients; we received two positive answers.
Finally, in two commits we found a message describing the
motivation for the change and confirming that it is a breaking
change. As an example, we have this answer:

Now, [Class Name] can be configured to apply to different
use cases . . . Breaking changes: Remove [Class Name] (D22)

During the 116 days of the study, we sent 102 emails and
received 56 responses, which represents a response ratio of
55%. Table II summarizes the numbers and statistics about
the study design phase, as previously described in this section.
After receiving all emails, we analyzed the answers using the-
matic analysis [16], a technique for identifying and recording
themes (i.e., patterns) in textual documents. Thematic analysis
involves the following steps: (1) initial reading of the answers,
(2) generating a first code for each answer, (3) searching for
themes among the proposed codes, (4) reviewing the themes
to find opportunities for merging, and (5) defining and naming
the final themes. Steps 1 to 4 were performed independently by
two authors of this paper. After this, a sequence of meetings
was held to resolve conflicts and to assign the final themes
(step 5). When quoting the answers, we use labels D1 to D60
to indicate the respondents (including four developers with
answers coming from commits).

TABLE II
NUMBERS ABOUT THE STUDY DESIGN

Days 116
Projects 400
Projects with commits 130
Projects with commits and BCCs 61
BCCs detected by APIDIFF 282
BCCs in commits with public emails 268
Commits confirming/describing BCCs motivations 4
Emails sent to authors of commits with BCCs 102
Received answers 56
Response ratio 55%

IV. RESULTS

A. How Often do Changes Impact Clients?

To answer this question, we first define breaking changes:

Definition: BCCs confirmed by the surveyed developers are
named Breaking Changes (BC).

As presented in Figure 6, only 59 BCCs (39%) detected
by APIDIFF are BCs. The remaining BCCs—which have
not been confirmed by the respective developers—are
called unconfirmed BCCs. Next, we characterize the BCs
investigated in this study; we also reveal the reasons for the
high percentage of unconfirmed BCs.
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Fig. 6. Confirmed and unconfirmed BCCs; confirmed BCCs are called BCs
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Fig. 8. Most common breaking changes per API element

Breaking Changes (BC): The 59 BCs detected in the study
are distributed over 19 projects and 24 commits, including
20 commits with BCs confirmed by email and 4 commits
with BCs declared in the commit description. Figure 7
shows the most common BCs. Among the Top-5, three are
refactorings, including MOVE METHOD (11 occurrences),
RENAME METHOD (8 occurrences), and MOVE CLASS (8
occurrences). The second most common BCs are the removal
of an entire class (10 occurrences), which can be viewed as a
drastic API change. The third most popular BCs are CHANGES
IN METHOD PARAMETERS (9 occurrences). Considering the
17 types of BCs detected by APIDIFF (see Table I), only 8
appeared in our study. Regarding the elements affected by the
changes, Figure 8 shows the BCs grouped by API element:
35 BCs (59%) are performed on methods, followed by BCs
on types (21 instances, 36%) and fields (3 instances, 5%).

Summary: The most common BCs are due to refactorings
(47%); most BCs are performed on methods (59%).

Unconfirmed BCCs: By contrast, in the case of 92 changes
(61%), the surveyed developers did not agree they have an
impact on clients. We organized the reasons mentioned by
these developers on two major themes: internal APIs and

testing branches/new releases. Regarding the first theme,
APIDIFF gives a warning about APIs that are likely to be
internal; specifically, the ones implemented in packages
containing the string internal, as recommended in the
related literature [11], [12]. Nonetheless, 21 developers
mentioned that the BCCs occurred at internal (or low-level)
APIs that do not include internal in their names, as in the
following answers:

This method is used internally, though it was public. We don’t
expect people using this method in their applications. (D30)

This could potentially break but this class is used internally
as utility and not intended to be used by library users. (D32)

The second cause of unconfirmed BCCs are due to testing
branches. As described in Section III-B, we monitored
all branches of the analyzed repositories to contact the
developers just after the changes. Consequently, in some
cases, we considered BCCs in branches that do not represent
major developments, e.g., testing branches, branches dedicated
to experiments, etc. Ten developers mentioned that the BCC
occurred in such branches, as in the following answer:

This is a early extension of [Project Name] to support Java 9
modules. Thus, the code is neither stable nor complete. (D42)

Summary: Most unconfirmed BCCs are related to changes
in internal or low-level APIs or in testing branches.

B. Why do Developers Break APIs?
As reported in Table III, we found four distinct reasons

for breaking APIs: New Feature, API Simplification, Improve
Maintainability, and Bug Fixing. In the following paragraphs,
we describe and give examples of each of these motivations.

TABLE III
WHY DO WE BREAK APIS?

Motivation Description Occur.

NEW FEATURE BCs to implement new features 19
API SIMPLIFICATION BCs to simplify and reduce the API

complexity and number of elements
17

MAINTAINABILITY BCs to improve the maintainability
and the structure of the code

14

BUG FIXING BCs to fix bugs in the code 3
OTHER BCs not fitting the previous cases 6

New Feature. With 19 instances (32%), the implementation
of a new feature is the most common motivation to break
APIs. As examples, we have the following answers:

The changes in this commit were just a setup before
implementing a new feature: chart data retrieval. (D01)

The changes were adding new functionality, which were
requested on GitHub by the users, but to avoid unnecessary
duplications I had to change the method name to better reflect
what the method would be doing after the changes. (D13)

In the first answer, D01 moved some classes from packages,
before starting the implementation of a new feature. Therefore,



clients should update their import statements, to refer to the
new class locations. In the second answer, D13 renamed a
method to better reflect its purpose after implementing a new
feature. The rename should then be propagated to the method
calls in the API clients.

API Simplification. With 17 instances (29%), these BCs
include the removal of API elements, to make the API
simpler to use. As examples, we have these answers:

We can access the argument without it being provided using
another technique. (D03, Change in Parameter List)

This method should not accept any parameters, because they
are ignored by server. (D08, Change in Parameter List)

We are preparing for a new major release and cleaning up
the code aggressively. (D09, Remove Class)

In the first two answers, D03 and D08 removed one
parameter from public API methods. In the third answer, D09
removed a whole class from the API, before moving to a
new major release. In these three examples, the API became
simpler and easier to use or understand. However, existing
clients must adapt their code to benefit from these changes.

Improve Maintainability. With 14 instances (24%), BCs
performed to improve maintainability, i.e., internal software
quality aspects, are the third most frequent ones. As examples,
we have the following answers:

Because the old method name contained a typo. (D15,
Rename Method)

Make support class lighter, by moving methods to Class and
Method info. (D24, Move Method)

In the first answer, D15 renamed a method to fix a spelling
error, while in the second answer, D24 moved some methods
to a utility class to make the master class lighter.

Bug Fixing. In the case of 3 BCs (5%), the motivation is
related with fixing a bug, as in the following answers:

The iterator() method makes no sense for the cache. We can
not be sure that what we are iterating is the right collection
of elements. (D05, Remove Method)

The API element could cause serious memory leaks. (D12,
Change in Parameter List)

In the first answer, D05 removed a method with an
unpredicted behavior in some cases. In the second answer,
D12 removed a flag parameter related to memory leaks.

Other Motivations. This category includes six BCs whose
motivations do not fit the previous cases. For example, BCs
performed to remove deprecated dependencies (2 instances),
BCs to adapt to changes in requirements and specification (2
instances), BCs to eliminate trademark conflicts (1 instance),
and one BC with an unclear motivation, i.e., we could not
understand the specific answer provided by the developer.
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Fig. 9. Top-3 most common BCs, grouped by motivation

Summary: BCs are mainly motivated by the need to imple-
ment new features (32%), to simplify the API (29%), and to
improve maintainability (24%).

Figure 9 shows the top-3 most common BCs due to Feature
Addition, API Simplification, and to Improve Maintainability.
MOVE CLASS is the most common BC when implementing a
new feature, with 7 occurrences. Specifically, when working
on a new major release, developers tend to start by performing
structural changes in the code, which include moving classes
between packages. To simplify APIs, developers usually
REMOVE CLASSES (5 instances) and also add a final

modifier to methods (4 instances). The latter is considered a
simplification because it restricts the usage of API methods;
after the change, the API methods cannot be redefined in
subclasses, but only invoked by clients. Finally, it is not a
surprise that BCs performed to improve maintainability are
refactorings. In this case, the three most popular BCs are
due to MOVE METHOD (11 instances), RENAME METHOD
(2 instances), and MOVE CLASS (1 instance). Interestingly,
MOVE CLASS is also used when implementing a new feature.

Summary: BCs due to refactorings are performed both to
improve maintainability and to enable and facilitate the
implementation of new features.

C. What Is the Effort on Clients to Migrate?

We organized the answers of this survey question in three
levels: minor, moderate, or major effort. Seven developers
answered the question. As presented in Figure 10, six
developers estimated that the effort to use the new version
is minor, while one answered with a moderate effort; none
of them considered the update effort as a major one. For
example, developer D04—who moved a class between
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packages with the purpose of improving maintainability
—estimates a minor effort on clients to use the new version:

Work required should be minor, since it is just a change of a
package. (D04, Move Class)

A single developer (D09) answered that a class removal
may require a moderate effort on clients:

The complexity will depend largely on the size of the project
and how they use the library. (D09, Remove Class)

Summary: According to the surveyed developers, the effort
on clients to migrate to the new API versions is minor.

D. Why didn’t you Deprecate the Old Implementation?

17 developers answered this survey question. As presented
in Figure 11, they presented five reasons for not deprecating
the API elements impacted by the BCs.

Increase Maintenance Effort. 8 developers mentioned that
deprecated elements increase the effort to maintain the
project, as in the following answer:

In such a small library, deprecation will only add complexity
and maintenance issues in the long run. (D16)

Minor Change/Impact: Four developers argued that the
performed BCs require trivial changes on clients or that the
library has few clients, as in the following answers:

Because the fix is so easy. (D15)

The main reason is that [the number of] users is small. (D14)

Other motivations include the following ones: library is still
in beta (1 developers), incompatible dependencies with the
old version (1 answer), and trademark conflicts (1 answer).
Finally, one developer forgot to add deprecated annotations.

Summary: Developers do not deprecate elements affected by
BCs mostly due to the extra effort to maintain them.

E. How do Developers Document Breaking Changes?

This question was answered by 18 developers. Among
the received answers, 14 developers stated they intend to
document the BCs. We analyzed these answers and extracted
seven different documents they plan to use to this purpose (see
Figure 12). Release Notes and Changelogs are the most com-
mon documents, mentioned by four developers each, followed
by JavaDoc (3 developers).
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Fig. 12. How do you plan to document the detected BCs?

Finally, four developers do not plan to document the BCs.
For example, two of them considered the changes trivial and
self-explained.

Summary: BCs are usually documented using release notes
or changelogs.

V. IMPLICATIONS

This section presents the study implications to language
designers, tool builders, researchers, and practitioners.

Language Designers: Among the 151 Breaking Changes
Candidates (BCCs) with developers’ answers, only 59 were
classified as Breaking Changes (BCs). The other BCCs are
mostly changes in internal or low-level APIs or changes
performed in experimental branches. Since they are designed
for internal usage only, developers do not view changes in
these APIs as BCs. However, previous research has shown that
occasionally internal APIs are used by external clients [11],
[12], [17]–[21]. For example, clients may decide to use internal
APIs to improve performance, as a workaround for bugs, or
to benefit from undocumented features. This usage is only
possible because internal APIs are public, as the official and
documented ones; and their usage is not checked by the
Java compiler. To tackle this problem, a new module system
is being proposed to Java, which will allow developers to
explicitly declare the module elements they want to make
available to external clients.2 The Java compiler will use these
declarations to properly encapsulate and check the usage of
internal APIs. Therefore, our study reinforces the importance
of introducing this new module system in Java, since we con-
firmed that changes in internal API elements are frequent. We

2http://openjdk.java.net/projects/jigsaw



also confirmed that API developers use the public keyword
in Java with two distinct semantics (“public only to my code”
vs “public to any code, including clients”).

Tool Builders: APIDIFF is an useful tool both to API de-
velopers and clients. API developers can use the tool to
document changes in their APIs, e.g., to automatically generate
changelogs or release notes. API clients can also rely on
APIDIFF to produce these documents, in order to better assess
the effort to migrate to API versions that are not properly
documented. However, we also faced an important limitation
when dealing with the output produced by APIDIFF. Currently,
MOVE/RENAME operations are detected as a removal (RE-
MOVE) followed by an addition (ADD) of an API element. As
described in Section II, to generate the correct names for these
operations, we had to manually inspect the output produced
by APIDIFF and the textual diff of the respective commits.
Thus, we consider that APIDIFF implementation can follow
existing approaches and tools [22]–[24] and automatically
detect the cases where REMOVE followed by an ADD is indeed
a RENAME (when confined to the same class) or a MOVE (when
involving different classes) refactoring.

Researchers: Although based on a limited number of 59 BCs,
our study reveals opportunities to improve the state-of-the-
art on API design, evolution, and analysis. First, the study
suggests that BCs are often motivated by the implementation
of new features and that refactorings are usually performed at
that moment, to support the implementation of the new code.
In fact, a recent study on refactoring practices considering
all types of GitHub projects, i.e., not restricted to libraries
and frameworks, also shows that refactoring is mainly driven
by the implementation of new requirements [24]. Therefore,
we envision a new research line on techniques and tools to
recommend refactorings and related program redesign opera-
tions, when a new version of an API is under design. In other
words, the focus should be on API-specific remodularization
techniques, instead of global remodularization approaches, as
commonly proposed in the literature [25]–[29]. Second, the
study suggests that BCs are also motivated by a desire to
reduce the number of API elements or reduce the possible
usages of some elements (e.g., by making them final).
Therefore, we envision research on API-specific static analysis
tools (or API-specific linter tools), which could for example
recommend the removal of useless parameters in API methods
(as we found in 2 BCs), the insertion of a final modifier (as
we found in 6 BCs) or even the removal of underused methods
and classes (as we found in 2 BCs). The benefit in this case
would be the recommendation of these changes at design time
or during early usage phases, before the affected API elements
gain clients and the change costs and impact increase. Third,
the answers of the third survey question suggest that BCs may
have a minor impact on clients (but according to a small sam-
ple of six developers). Thus, we envision further research on
migration tools, which could help API clients to move to new
API versions by providing recommendations on how to deal
with trivial BCs [5], [21], [30], [31]. Fourth, the answers of

the last survey question show that some API developers can be
reluctant to use the deprecation mechanism provided by Java.
Essentially, they argue that deprecation increases maintenance
burden, by requiring updates on multiple versions of the same
API element. Therefore, we also envision research on new
and possibly lightweight mechanisms to API versioning. It is
also possible to recommend the traditional mechanism only in
special cases, particularly when the BCs might impact a large
number of clients or require complex changes.

Practitioners: The study also provides actionable results and
guidelines to practitioners, especially to API developers. First,
we detected many unconfirmed BCCs in packages that do
not have the terms internal or experimental (or similar
ones) in their names. We recommend the usage of these
names to highlight to clients the risks of using internal and
unstable APIs. Second, the study also reveals that some BCs
are caused by trivial programming mistakes, e.g., parameters
that are never used. Since APIs are the external communication
ports of libraries and frameworks, it is important that they
are carefully designed and implemented. Third, most BCs
detected in the study require trivial changes in clients, at least
according to six surveyed developers. Thus, API developers
should carefully evaluate the introduction of BCs demanding
complex migration efforts, which can trigger a strong rejection
by clients. Fourth, we listed good practices used by developers
to document BCs, for example, changelogs and release notes.

VI. THREATS TO VALIDITY

External Validity. As usual in empirical software engineering,
our findings are restricted to the studied subjects and cannot
be generalized to other scenarios. Nevertheless, we daily
monitored a large dataset of 400 Java libraries and frameworks,
during a period of 116 days (almost 4 months). During this
time, we questioned 102 developers about the motivations of
breaking changes right after they had been performed. Due
to such numbers, we consider that our findings are based on
representative libraries, which were assessed during a large
period of time, with answers provided by developers while
the subject was still fresh in their minds. Moreover, our
analysis is restricted to syntactical breaking changes, which
result on compilation errors in clients. BCs that modify the
API behavior without changing its signature, usually named
Behavioral Backward Incompatibilities [32], are outside of the
scope of this paper.

Internal Validity. First, we use APIDIFF to detect breaking
changes between two versions of a Java library. Although this
tool was implemented and used in our previous research [9],
an error on its result would introduce false positives in our
analysis. To mitigate this threat, we considered the breaking
changes provided by the tool as candidates and only assessed
those confirmed by their developers, which represents 39%
of BCCs (see Sections IV-A). Second, we reinforce the sub-
jective nature of this study and its results. As discussed in
Section III-C, a thematic analysis was performed to elicit the
reasons that drive API developers to introduce BCs. Although



this process was rigorously followed by two authors of the
paper, the replication of this activity may lead to a different
set of reasons. To alleviate this threat, special attention was
paid during the sequence of meetings held to resolve conflicts
and to assign the final themes. Third, against our belief, the
trustworthiness and correctness of the responses is also a threat
to be reported. To mitigate it, we strictly sent emails in no
more than few days after the commits. This was important to
guarantee a higher response rate and reliable answers, once
the modifications were still fresh on developers’ minds.

Construct Validity. The first threat relates to the selection of the
Java libraries. As discussed in Section III-A, we automatically
discarded, from the top-2,000 most popular Java projects on
GitHub, the ones that do not have the following keywords
in their short description: library(ies), API(s), framework(s).
Next, we manually discarded those that, although containing
such words, do not actually represent a library. Since this pro-
cess is conservative in providing a reliable dataset of projects
that are libraries, we can not guarantee that we retrieved the
whole set of actual libraries from the 2,000 projects. Second,
our results stand on the agreement of developers on the
detected BCCs. As observed in Section IV-A, most developers
pointed out that the detected changes refer to internal or low-
level APIs, mentioning that it is unlikely that they could
break clients. However, previous research has shown that
occasionally internal APIs are used by external clients [11],
[12], [17]–[21]. Therefore, we might have excluded BCCs that
could actually impact clients, but we decided to follow the
conservative decision of only considering BCCs perceived by
developers as having a high potential to break existing clients.

VII. RELATED WORK

We organized related work in three subsections: (a) studies
about breaking changes in APIs; (b) field studies using the
firehouse interview method; (c) other studies on API evolution.

A. Studies on Breaking Changes

In a previous short paper, we report a preliminary study to
reveal the reasons of API breaking changes in Java [14]. In this
first study, we also use APIDIFF to detect breaking changes.
We contacted the principal developers of 49 libraries, asking
them about the reasons of all breaking changes detected by
APIDIFF in previous releases of these libraries. By contrast, in
this new study we contacted the precise developers responsible
by a breaking change, right after it was introduced in the
code; and we asked them to reveal the reasons for this
specific breaking change. Furthermore, to identify breaking
changes, we monitored all commits of a list of 400 Java
libraries, during 116 days. As a consequence of the distinct
methodologies, in the first study we received valid answers of
only seven developers (while in the present study we received
56 answers). From these seven answers, we extracted five
reasons for breaking changes: API Simplification, Refactoring,
Bug Fix, Dependency Changes, and Project Policy. The first
four are also detected in the present study. However, the major

reason for breaking changes reported in the present study (New
Feature) was not detected in the preliminary one.

In another related study [9], we investigate breaking changes
in 317 real-world Java libraries, including 9K releases and
260K client applications. We show that 15% of the API
changes break compatibility with previous versions and that
the frequency of breaking changes increases over time. Using
data from the BOA ultra-large dataset [33], we report that
less than 3% of the breaking changes impact clients. To reach
this result, we considered all breaking changes detected by
APIDIFF. However, in the present paper, we found that only
39% of the BCCs are viewed by developers as having a major
potential to break existing clients.

Dig and Johnson [34] studied API changes in five frame-
works and libraries (Eclipse, Mortgage, Struts, Log4J, and
JHotDraw). They report that more than 80% of the breaking
changes in these systems were due to refactorings. By con-
trast, using a large dataset of 400 popular Java libraries and
frameworks, we also found that BCs are usually related to
refactorings, but at a lower rate (47%). Moreover, we listed two
other important motivations for breaking changes: to support
the implementation of new features and to simplify and reduce
the number of API elements. Bogart et al. [8] conducted a
study to understand how developers plan, negotiate, and man-
age breaking changes in three software ecosystems: Eclipse,
R/CRAN, and Node.js/npm. After interviewing key developers
in each ecosystem, they report that a core value of the Eclipse
community is long-term stability; therefore, breaking changes
are rare in Eclipse. R/CRAN values snapshot consistency,
i.e., the newest version of every package should be always
compatible with the newest version of every other package
in the ecosystem. Once snapshot consistency is preserved,
breaking changes are not a major concern in R/CRAN. Finally,
breaking changes in Node.js/npm are viewed as necessary for
progress and innovation. In the interviews, the participants
also mentioned three general reasons for breaking changes:
technical debt (i.e., to improve maintainability), to fix bugs,
and to improve performance. The first two motivations appear
in our study, but we did not detect breaking changes motivated
by performance improvements. However, these answers should
be interpreted as general reasons for breaking changes, as
perceived by the interviewed developers. By contrast, in our
study the goal was to reveal reasons for specific breaking
changes, as declared by developers right after introducing them
in the source code of popular Java libraries and frameworks.

B. Studies using Firehouse Interviews

A firehouse interview is one that is conducted right after the
event of interest has happened [10]. The term relates to the
difficulty of performing qualitative studies about unpredictable
events, like a fire. In such cases, researchers should act like
firemen after an alarm; they should rush to the firehouse,
instead of waiting the event to be concluded to start their
research. In our study, the events of interest are API breaking
changes; and firehouse interviews allowed us to collect the
reasons for theses changes right after they were committed



to GitHub repositories. In software engineering research, fire-
house interviews were previously used to investigate bugs
just fixed by developers [35], [36], but using face-to-face
interviews with eight Microsoft engineers. Silva et al. [24]
were the first to use firehouse interviews to contact GitHub
developers by email. Their goal was to reveal the reasons be-
hind refactorings applied by these developers; in this case, they
also used a tool to automatically detect refactorings performed
in recent commits. They sent e-mails to 465 developers and
received 195 answers (42% of response ratio). Mazinanian et
al. [37] used a similar approach, but to understand the reasons
why developers introduce lambda expressions in Java. They
sent emails to 351 developers and received 97 answers (28%
of response ratio). In our study, we contacted 102 developers
and received 56 answers (55% of response ratio).

C. Studies on API Evolution

Several studies have been proposed to support API evo-
lution and client developers. Chow and Notkin [38] present
an approach where library developers themselves annotate
the changed methods with replacement rules. Henkel and
Diwan [39] propose a tool that captures and replays API
evolution refactorings. Kim et al. [40] support computing
differences between two versions of a system. Nguyen et
al. [30] use graph-based techniques to help developers migrate
from one library version to another. Other studies focus on
extracting API evolution rules from source code. For example,
Schafer et al. [41] mine library change rules from client
systems, while Dagenais and Robillard [21] suggest API re-
placements based on how libraries adapt to their own changes.
Also in this context, Meng et al. [42] propose a history-based
matching approach to support API evolution.

In a large-scale study, Robbes et al. [6] assess the impact
of API deprecation in a Smalltalk ecosystem. Recently, the
authors also evaluated the impact in the context of the Java
programming language [43], [44]. In this study, they found
that some API deprecation have large impact on the ecosystem
under analysis and that the quality of deprecation messages
should be improved. Jezek et al. [45] study 109 Java open-
source programs and 564 program versions, showing that APIs
are commonly unstable. Raemaekers et al. [3] investigate API
stability with the support of four proposed metrics, based on
method removal and implementation change. In the context of
mobile development, McDonnell et al. [7] investigate stability
and adoption of the Android API. In this study, the authors
show that APIs are updated on average 115 times per month,
representing a rate faster than clients’ update.

Some studies investigate the usage and evolution of internal
APIs, i.e., public but unstable and undocumented APIs that
should not be used by client applications [11], [12], [17], [19],
[20]. In this context, Businge et al. [19] study the survival of
Eclipse plugins, and classify them in two categories: plugins
depending on internal APIs and plugins depending only on
official APIs. In an extended study [11], the authors present
that 44% of 512 Eclipse plugins depend on internal APIs.
In addition, the same authors investigate the reasons why

developers do use internal APIs [20]. For example, they detect
cases where developers do not read documentation (so they are
not aware of the risks), but also cases where developers de-
liberately use internal APIs to benefit from advanced features,
not available in the official APIs. Mastrangelo et al. [12] show
that clients commonly use the internal API sun.misc.Unsafe
provided by JDK. Recently, Hora et al. [17] studied the
transition of internal APIs to public ones, aiming to support
library developers to deliver better API modularization.The
authors also performed a large analysis to assess the usage
of internal APIs. In our survey, several developers mentioned
that the breaking changes happened in public but internal or
low-level APIs that clients should not rely on. Notice, however,
that the related literature points in the opposite direction: client
developers tend to use internal APIs.

VIII. CONCLUSION

Libraries and frameworks are key instruments to promote
reuse an increase productivity in modern software devel-
opment. Ideally, software libraries and frameworks should
provide stable and backward-compatible APIs to their clients.
However, the practice reveals that breaking changes (BCs) are
common. In this paper, we described a large-scale empirical
study (400 libraries, 4-month long period, 282 possible break-
ing changes, 56 developers contacted by email) to understand
why and how developers break APIs in Java. By using a
firehouse interview method, we found that BCs are mainly mo-
tivated by the implementation of new features, to simplify the
number of API elements, and to improve maintainability. The
most common BCs are due to refactorings (47%); regarding
the programming elements affected by BCs, most are methods
(59%). According to the surveyed developers, the effort on
clients to migrate to new API versions, after BCs, is minor. We
also listed some strategies to document BCs, like release notes
and changelogs. Last but not least, we presented an extensive
list of empirically-justified implications of our study, targeting
four distinct audiences: programming languages designers,
tool builders, software engineering researchers, and API de-
velopers. However, such implications should be viewed and
interpreted with care, since they are derived from considering
only 59 BCs and a single programming language (Java).

Further studies can consider other software ecosystems and
programming languages (particularly, dynamic languages);
other research methodologies (e.g., semi-structured inter-
views); and also provide a quantitative and qualitative as-
sessment of the impact of breaking changes in the other
protagonists of this story: the developers who depend on APIs
affected by breaking changes.
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