
Noname manuscript No.
(will be inserted by the editor)

You Broke My Code: Understanding the Motivations
for Breaking Changes in APIs

Aline Brito · Marco Tulio Valente ·
Laerte Xavier · Andre Hora

Received: date / Accepted: date

Abstract As most software systems, libraries and frameworks also evolve,
which may break existing clients. However, the main reasons to introduce
breaking changes in APIs are unclear. Therefore, in this paper, we first report
the results of an almost 4-month long field study with popular Java libraries
and frameworks. We configured an infrastructure to observe all changes in
these libraries and to detect breaking changes shortly after their introduc-
tion in the code. We detected possible breaking changes in 61 projects. After
identifying breaking changes, we asked the developers to explain the reasons
behind their decision to change the APIs. By analyzing the developers’ an-
swers, we report that breaking changes are mostly motivated by the need to
implement new features, by the desire to make the APIs simpler and with fewer
elements, and to improve maintainability. To complement this first study, we
describe a second study, including the analysis of 110 Stack Overflow posts
related to breaking changes. We reveal that breaking changes have an im-
portant impact on clients, since 45% of the questions are from clients asking
how to overcome specific breaking changes; they are also common in other
ecosystems—JavaScript, .NET, etc. We conclude by providing suggestions to
language designers, tool builders, software engineering researchers, and API
developers.

Keywords API Evolution · Breaking Changes · Firehouse Interviews · Stack
Overflow

Aline Brito
Department of Computer Science, UFMG, Brazil, E-mail: alinebrito@dcc.ufmg.br

Marco Tulio Valente
Department of Computer Science, UFMG, Brazil, E-mail: mtov@dcc.ufmg.br

Laerte Xavier
Department of Computer Science, UFMG, Brazil, E-mail: laertexavier@dcc.ufmg.br

Andre Hora
Department of Computer Science, UFMG, Brazil, E-mail: andrehora@dcc.ufmg.br

2 Aline Brito et al.

1 Introduction

Software libraries are commonly used nowadays to support development, pro-
viding code reuse, improving productivity, and, consequently, decreasing costs
[26, 35, 44]. For example, there are more than 200K libraries registered on
Maven’s central repository,1 a popular package management for Java. They
cover distinct scenarios, from mobile and web programming to scientific and
statistical analysis. These functionalities are provided to client systems via Ap-
plication Programming Interfaces (APIs), which are contracts that clients rely
on [45]. In principle, APIs should be stable and backward-compatible when
evolving, so that clients can confidently rely on them. However, community
values also influence the stability of APIs. For example, Bogart et al. [7] show
that long-term stability is the core value considered by developers when main-
taining Eclipse APIs. By contrast, in other ecosystems developers may value
fast change and evolution, in order to continuously improve the services pro-
vided by their APIs. This is usually the case of Node.js-based APIs. Indeed,
recent studies show that APIs are often unstable and backward-incompatible
(e.g., [7, 22,30,46,54]).

API breaking changes comprise from simple modifications, such as the
change of a method signature or return type, to more critical and impactful
ones, such as the removal of a public element. In this context, one important
question is not completely answered in the literature: despite being recognized
as a programming practice that may harm client applications, why do develop-
ers break APIs? Better understanding these reasons may support the develop-
ment of new language features and software engineering approaches and tools
to improve library maintenance practices.

Firehouse Interview Study: In a previous conference paper [11], we first study
the motivations driving API breaking changes from the perspective of library
developers. By mining daily commits of relevant libraries, we looked for API
breaking changes, and, when detected, we sent emails to developers to better
understand the reasons behind the changes, the real impact on client appli-
cations, and the practices adopted to alleviate the breaking changes. We also
characterized the most common program transformations that lead to break-
ing changes. Specifically, we investigated five research questions:

1. How often do changes impact clients? 39% of the changes investigated in
the study may have an impact on clients.

2. Why do developers break APIs? We identified three major motivations to
break APIs, including changes to support new features, to simplify the
APIs, and to improve maintainability.

3. What is the effort on clients to migrate? We found that a minor migration
effort is required in most cases, according to the surveyed developers.

1 https://search.maven.org/stats

You Broke My Code 3

4. Why don’t developers deprecate broken APIs? Most developers mentioned
the increase on maintainability effort as the reason for not deprecating
broken APIs.

5. How do developers plan to document breaking changes? Most developers
plan to document the detected breaking changes, mainly using release notes
and changelogs.

To answer these questions, we followed a firehouse interview method [47].
Basically, we monitored 400 real world Java libraries and frameworks hosted on
GitHub during 116 days. During this period, we detected 282 possible break-
ing changes, sent 102 emails, and received 56 responses, which represents a
response rate of 55%. Our approach has an important characteristic: the de-
velopers explained the breaking changes few hours after they had performed
them. As pointed by previous studies [29, 51], this is likely to produce more
credible answers (since the change is fresher in the developers’ minds) and
grab more attention.

Stack Overflow Study: In the first study, we aimed to reveal the motivations
and program transformations that cause breaking changes in a single ecosys-
tem: Java libraries and frameworks. Furthermore, the study was based on fire-
house interviews with API owners. In this paper, we extend this study in two
main dimensions: (1) by considering the views and impact of breaking changes
in API clients; (2) by considering breaking changes in other ecosystems, besides
Java. To this purpose, instead of firehouse interviews, we based this second
study on the analysis of Stack Overflow posts about breaking changes. We
analyze a sample of 110 posts, and reveal that breaking changes indeed have
an important impact on clients; particularly, 49 of the posts (45%) are clients
asking how to overcome specific breaking changes that are causing problems
in their code. We also reveal that questions about breaking changes are dis-
tributed over different ecosystems, including .NET, JavaScript, and Java.

Contributions: This paper makes five contributions.

1. To our knowledge, we are the first to reveal the reasons of concrete breaking
changes introduced by practitioners in the source code of popular Java
APIs.

2. We show how breaking changes are introduced in the source code, including
the most common program transformations used to break APIs.

3. We confirm that breaking changes have an important impact on clients;
they also happen in other ecosystems.

4. We provide an extensive list of implications of our study, including impli-
cations to language designers, tool builders, researchers, and practitioners.

Structure of the paper. Section 2 introduces the tool and approach used to
detect breaking changes. Section 3 details the design of the firehouse interview
study, while Section 4 presents its results. Section 5 describes the second study,
based on the analysis of 110 Stack Overflow posts. We discuss the implications
of both studies in Section 6. Section 7 lists threats to validity and Section 8
presents related work. Finally, we conclude the paper in Section 9.

4 Aline Brito et al.

public static Picasso with(Context) {
 //...
}be

fo
re

af
te

r public static Picasso with() {
 //...
}

BCC:
parameter
list change

Fig. 1 Example of BCC detected by apidiff at method level

2 APIDiff Tool

To detect breaking changes, we use a tool named apidiff [10], which was
implemented and used by Xavier et al. [55] in a study about the frequency
and impact of breaking changes. Essentially, apidiff compares two versions
of a library and lists all syntactic changes in public elements. In other words,
the tool focus in changes in public elements which cause compilation errors
in client’s source code.2 It is also important to mention that most changes
currently detected by APIDiff are inspired in a catalog of breaking changes
proposed by Dig and Johnson [19]. In this paper, the results produced by
apidiff are named Breaking Change Candidates (BCC). The reason is that
changes in public elements—as identified by apidiff—do not necessarily have
an impact on API clients. For example, the changed elements may denote
internal or low-level services, which are designed only for local usage. To clarify
this question, we conducted a survey with API developers, to confirm whether
the BCCs detected by apidiff are indeed breaking changes (see Section 3).

Definition: Changes detected by apidiff in public API elements are named
Breaking Change Candidates (BCC).

Table 1 lists the BCCs detected by apidiff. These changes refer to the
following API elements: types, methods, or fields. BCCs on types include,
for example, drastic changes, like the removal of a type from the code. But
subtle changes in public types are also detected, including changing a type
visibility from public to another modifier, changing the supertype of a type,
adding a final modifier to a type (to disable inheritance), or removing the
static modifier of an inner class. Besides the changes detected to types, BCCs
in methods include changes in return types or parameter lists. Changes in fields
include, for example, changing the default value of a field. Figure 1 shows an
example of BCC detected by apidiff in a method of square/picasso (an
image downloading library). According to the developer who performed this
change, he removed the parameter Context from method with to simplify the
API, since this parameter can be retrieved in other ways. apidiff also detects
breaking changes involving fields. For example, the tool classified as a BCC the

2 Currently, apidiff does not detect breaking changes in annotations. Instead, these break-
ing changes are reported in the fields of the interfaces defining an annotation.

You Broke My Code 5

Table 1 BCCs detected by apidiff

Element BCC

Type remove type, change in access modifiers, change in supertype,
add final modifier, remove static modifier

Method remove method, change in access modifiers, change in return
type, change in parameter list, change in exception list, add
final modifier, remove static modifier

Field remove field, change in access modifiers, change in field type,
change in field default value, add final modifier

removal of five public fields of a class called glprofiler from libgdx/libgdx
(a game development framework).3

As implemented by the current apidiff version, changes in deprecated
API elements (i.e., elements annotated with @Deprecated) are not BCCs.
The rationale is that clients of these elements were previously warned that
they are no longer supported, and, therefore, subjected to changes or even to
removal. For instance, suppose a method m implemented in the first release
of a library. In the second release, the owners deprecated this method; and
removed it in a third release. Therefore, since the method was deprecated,
this last change—in the third release—is not reported as a BCC by apidiff.
Finally, apidiff warns if a BCC is performed in an experimental or internal
API [14, 28]. For this purpose, the tool checks if the qualified name of the
changed API element includes a package named internal, as in this example:
io.reactivex.internal.util.ExceptionHelper. With this warning, the goal
is to alert users that the identified BCC is probably a false breaking change.

As presented in Table 1, apidiff does not use the term refactoring to
name BCCs. For example, the rename of an API element A to B is iden-
tified as the removal of the element A from the code. Similarly, a move
class/method/field from location C to a new location D is identified as
the removal of the element from its original location C. In order to use the
most appropriate names to identify these operations, we manually inspected
the BCCs detected by apidiff. For each commit with a BCC, we analyzed its
textual diff, as generated by GitHub. The detection of refactorings performed
on classes (rename/move Class) was facilitated because these operations are
automatically indicated in the textual diff computed by GitHub. For exam-
ple, Figure 2 shows a screenshot of a diff in facebook/fresco that includes
a move class.4 At the top of the figure, there is an indication that class
DrawableFactory was moved from package com.facebook.drawee.backends.-
pipeline to package com.facebook.imagepipeline.drawable. By contrast,
to detect rename/move method/field we needed to perform a detailed
inspection on the diffs results.

3 https://github.com/libgdx/libgdx/commit/3eede16
4 https://github.com/facebook/fresco/commit/f6fe6c3

6 Aline Brito et al.

Fig. 2 Screenshot of a textual diff produced by GitHub in facebook/fresco. A move
class is indicated in the header line.

3 Study Design

3.1 Selection of the Java Libraries

First, we selected the top-2,000 most popular Java projects on GitHub, or-
dered by number of stars and that not are forks (on March, 2017). We used
this criteria because stars is a common and easily accessible proxy for the pop-
ularity of GitHub projects [8]. Next, we discarded projects that do not have
the following keywords in their short description: library(ies), API(s), frame-
work(s). We also manually removed deprecated projects from this list, i.e.,
projects that have deprecated in their short description, to focus the study
on active repositories. These steps resulted in a list of 449 projects. Then, we
manually inspected the documentation, wiki, and web pages of these projects
to guarantee they are libraries or similar software. As a result, we removed 49
projects. For example, googlesamples/android-vision has the following
short description: Sample code for the Android Mobile Vision API. Despite
having the keyword API in the description, this repository is neither a library
nor a framework, but just a tutorial about a specific Android API. Thus, the
final list consists of 400 GitHub projects, including well-known systems such
as junit-team/junit4 (a testing framework), square/picasso (an image
downloading and caching framework), and google/guice (a dependency in-
jection library).

3.2 Detecting BCCs

During 116 days, from May 8th to August 31th, 2017, we monitored the com-
mits of the selected projects to detect BCCs. To start the study, on May 8th,
2017 we cloned the selected 400 libraries and frameworks to a local repository.
Next, on each work day, we ran scripts that use the git fetch operation to re-
trieve the new commits of each repository. We discarded a new commit when
it did not modify Java files. Furthermore, on Git, developers can work locally
in a change and just submit the new revision (via a git push) after a while.
Therefore, we also discarded commits with more than seven days, to focus

You Broke My Code 7

1334.5 1451

1000

2500

10000

20000

Libraries Libraries with BCCs

S
ta

rs
 (

lo
g

sc
al

e)

Stars

2.5
3

0

2

4

6

8

Libraries Libraries with BCCs

Ye
ar

s

Age

9

40

10

100

300

Libraries Libraries with BCCs

C
on

tr
ib

ut
or

s
(lo

g
sc

al
e)

Contributors

198.5

1378

10

100

1000

10000

Libraries Libraries with BCCs

C
om

m
its

 (
lo

g
sc

al
e)

Commits

Fig. 3 Distribution of number of stars, age, number of contributors, and number of commits
of the initial 400 Libraries and of the 61 Libraries with BCCs

the study on recent changes, which is important to increase the chances of
receiving feedback from developers (see Section 3.3). We also discarded com-
mits representing merges because these commits usually do not include new
features; moreover, merges have two or more parent commits, which leads to
a duplication of the BCCs identified by apidiff [55,56]. Finally, we manually
discarded commits in branches that only contain test code.

apidiff identified 282 BCCs in 110 commits, distributed over 61 projects
(47% of the 130 libraries and frameworks with commits changing public ele-
ments, i.e., both commits with BCCs, as listed in Table 2; and with non-BCCs,
e.g., adding a new public method). Figure 3 presents the distribution of num-
ber of stars, age (in years), number of contributors, and number of commits
of the initial selection of 400 libraries and frameworks (labeled as Libraries)
and of the 61 projects with BCCs (labeled as Libraries with BCCs). The dis-
tributions of Libraries with BCCs are statistically different from the initial
selection of 400 libraries in age, number of contributors, and number of com-
mits, but not regarding the number of stars (according to Mann-Whitney U
Test, p-value ≤ 5%). To show the effect size of this difference, we computed
Cliff’s delta (or d) [16]. The effect is medium for age, and large for number of
contributors and commits. In other words, libraries with BCCs are moderately

8 Aline Brito et al.

2

1 5 10 30
BCCs

Fig. 4 BCCs per project

Dear [developer name],

I am a researcher working with API usability and evolution. In my research, I am
studying the API of [repository/project].

I found that you performed the following changes in this project:

[BCCs list] and [commit links]

Could you please answer the following questions:

1. Why did you perform these changes?

2. Do you agree these changes can break clients? If yes, could you quantify
the amount of work to use the new implementation?

3. Why didn’t you deprecate the old implementation?

4. Do you plan to document the changes? If yes, how?

Fig. 5 Mail to the authors of commits with BCCs detected by apidiff

older (3 vs 2.5 years, median measures), but have more contributors (40 vs 9)
and more commits (1,378 vs 198.5) than the original list of libraries selected for
the study. Finally, Figure 4 shows the distribution of BCCs per project, con-
sidering only Libraries with BCCs. The median is two BCCs per project and
the system with the highest number of BCCs is robolectric/robolectric,
with 38 BCCs (including 35 BCCs where public API elements were changed
to protected visibility).5

3.3 Contacting the Developers

Among the 282 BCCs considered in the study, 268 (95%) were detected in
commits that contain a public email. Therefore, on each day of the study, af-
ter detecting such BCCs, we contacted the respective developers. In the emails
sent to them (see a template in Figure 5), we added a link to the GitHub com-
mit and a description of the BCC. Then, we asked four questions. With the

5 Most cases refer to internal or low-level API (34 occurrences) and one is an accidental
change.

You Broke My Code 9

Table 2 Numbers about the study design

Days 116
Projects 400
Projects with commits changing public elements 130
Projects with commits and BCCs 61
BCCs detected by apidiff 282
BCCs in commits with public emails 268
Commits confirming/describing BCCs motivations 4
Emails sent to authors of commits with BCCs 102
Received answers 56
Response ratio 55%

first question, we intended to shed light on the real motivation behind the de-
tected changes. With the second question, we intended to confirm whether the
BCC detected by apidiff can break existing clients. With the third question,
our interest was to understand why the developers have not deprecated the
API element where the BCC was detected. Finally, with the last question, our
interest was to investigate how often developers document BCCs.

We sent only one email to each developer. Specifically, whenever we de-
tected BCCs by the same developer, but in different commits, we only sent
one email to him, about the BCC detected in the first commit. In this way,
we reduced the chances that developers perceived our emails as spam. It is
also important to mention that before sending each email we inspected the
respective commit description to guarantee it did not include an answer to the
proposed questions. In the case of six commits, we found answers to the first
question (why did you perform these changes?). As an example, we have the
following commit description:

Lock down assorted APIs that aren’t meant to be used publicly subtyped. (D23,
Add Final Modifier)

In this message, the developer mentions he is adding a final modifier to
classes that must not be extended by API clients. We also sent a brief email to
the authors of these six commits, just asking them to confirm that the detected
BCCs can break existing clients; we received two positive answers. Finally, in
two commits we found a message describing the motivation for the change and
confirming that it is a breaking change. As an example, we have this answer:

Now, [Class Name] can be configured to apply to different use cases . . . Break-
ing changes: Remove [Class Name] (D22)

During the 116 days of the study, we sent 102 emails and received 56
responses, which represents a response ratio of 55%. Table 2 summarizes the
numbers and statistics about the study design phase, as previously described in
this section. After receiving all emails, we analyzed the answers using thematic
analysis [17], a technique for identifying and recording themes (i.e., patterns)
in textual documents. Thematic analysis involves the following steps: (1) ini-
tial reading of the answers, (2) generating a first code for each answer, (3)
searching for themes among the proposed codes, (4) reviewing the themes to

10 Aline Brito et al.

61%

39%

Unconfirmed

Confirmed

0 20 40 60 80 100
Occurrences

Fig. 6 Confirmed and unconfirmed BCCs; confirmed BCCs are called BCs

find opportunities for merging, and (5) defining and naming the final themes.
Steps 1 to 4 were performed independently by two authors of this paper. After
this, a sequence of meetings was held to resolve conflicts and to assign the
final themes (step 5). When quoting the answers, we use labels D1 to D60 to
indicate the respondents (including four developers with answers coming from
commits).

4 Results

4.1 How Often do Changes Impact Clients?

To answer this question, we first define breaking changes:

Definition: BCCs confirmed by the surveyed developers are named Breaking
Changes (BC).

As presented in Figure 6, regarding the 151 BCCs with developers’ answers,
only 59 (39%) are classified as BCs. The remaining BCCs—which have not
been confirmed by the respective developers—are called unconfirmed BCCs.
Next, we characterize the BCs investigated in this study; we also reveal the
reasons for the high percentage of unconfirmed BCs.

Breaking Changes (BC): The 59 BCs detected in the study are distributed
over 19 projects and 24 commits, including 20 commits with BCs confirmed
by email and 4 commits with BCs declared in the commit description. Figure
7 shows the most common BCs. Among the Top-5, three are refactorings, in-
cluding move method (11 occurrences), rename method (8 occurrences),
and move class (8 occurrences). The second most common BCs are the re-
moval of an entire class (10 occurrences), which can be viewed as a drastic API
change. The third most popular BCs are changes in method parameters
(9 occurrences). Considering the 17 types of BCs detected by apidiff (see
Table 1), only 8 appeared in our study. Regarding the elements affected by
the changes, Figure 8 shows the BCs grouped by API element: 35 BCs (59%)
are performed on methods, followed by BCs on types (21 instances, 36%) and
fields (3 instances, 5%). These three instances refer to changes in the types of
fields of an interface used to define an annotation.6

6 In the case of fields, breaking changes occur mainly when changing the type or default
value of a public field (or when removing it).

You Broke My Code 11

2%

2%

3%

5%

10%

14%

14%

15%

17%

19%

Access Modifier Change

Change in Field Default Value

Change in Return Type

Remove Method

Add Final Modifier

Move Class

Rename Method

Change in Parameter List

Remove Class

Move Method

0 4 8 12
Occurrences

Fig. 7 Most common breaking changes

5%

36%

59%

Field

Type

Method

0 10 20 30 40
Occurrences

Fig. 8 Most common breaking changes per API element

Summary: The most common BCs are due to refactorings (47%); most BCs
are performed on methods (59%).

Unconfirmed BCCs: By contrast, in the case of 92 changes (61%), the sur-
veyed developers did not agree they have an impact on clients. We organized
the reasons mentioned by these developers on two major themes: internal APIs
and experimental branches/new releases. Regarding the first theme, apidiff
gives a warning about APIs that are likely to be internal; specifically, the ones
implemented in packages containing the string internal, as recommended in
the related literature [14, 28]. Nonetheless, 21 developers mentioned that the
BCCs occurred at internal (or low-level) APIs that do not include internal

in their names, as in the following answers:

This method is used internally, though it was public. We don’t expect people
using this method in their applications. (D30)

This could potentially break but this class is used internally as utility and not
intended to be used by library users. (D32)

The second cause of unconfirmed BCCs are due to experimental branches.
As described in Section 3.2, we monitored all branches of the analyzed reposi-

12 Aline Brito et al.

Table 3 Why do we break APIs?

Motivation Description Occur.

new feature BCs to implement new features 19

api simplification BCs to simplify and reduce the API complexity and
number of elements

17

Maintainability BCs to improve the maintainability and the structure
of the code

14

bug fixing BCs to fix bugs in the code 3

other BCs not fitting the previous cases 6

tories to contact the developers just after the changes. Consequently, in some
cases, we considered BCCs in branches that do not represent major develop-
ments, e.g., branches dedicated to experiments, etc. Ten developers mentioned
that the BCC occurred in such branches, as in the following answer:

This is a early extension of [Project Name] to support Java 9 modules. Thus,
the code is neither stable nor complete. (D42)

Summary: Most unconfirmed BCCs are related to changes in internal or
low-level APIs or in testing branches.

4.2 Why do Developers Break APIs?

As reported in Table 3, we found four distinct reasons for breaking APIs: New
Feature, API Simplification, Improve Maintainability, and Bug Fixing. In the
following paragraphs, we describe and give examples of each of these motiva-
tions.

New Feature. With 19 instances (32%), the implementation of a new fea-
ture is the most common motivation to break APIs. As examples, we have the
following answers:

The changes in this commit were just a setup before implementing a new fea-
ture: chart data retrieval. (D01)

The changes were adding new functionality, which were requested on GitHub
by the users, but to avoid unnecessary duplications I had to change the method
name to better reflect what the method would be doing after the changes. (D13)

In the first answer, D01 moved some classes from packages, before starting
the implementation of a new feature. Therefore, clients should update their
import statements, to refer to the new class locations. In his answer to the
second survey question, D13 mentioned the clients requested a new function-
ality to configure buttons, which are components instantiated by a class from

You Broke My Code 13

the library. The methods were renamed to better reflect the purpose of this
new feature.

API Simplification. With 17 instances (29%), these BCs include the removal
of API elements, to make the API simpler to use. As examples, we have these
answers:

We can access the argument without it being provided using another technique.
(D03, Change in Parameter List)

This method should not accept any parameters, because they are ignored by
server. (D08, Change in Parameter List)

We are preparing for a new major release and cleaning up the code aggres-
sively. (D09, Remove Class)

In the first two answers, D03 and D08 removed one parameter from public
API methods. In the third answer, D09 removed a whole class from the API,
before moving to a new major release. In these three examples, the API be-
came simpler and easier to use or understand. However, existing clients must
adapt their code to benefit from these changes.

Improve Maintainability. With 14 instances (24%), BCs performed to im-
prove maintainability, i.e., internal software quality aspects, by means of refac-
toring operations (rename, move, extract, etc) are the third most frequent ones.
As examples, we have the following answers:

Because the old method name contained a typo. (D15, Rename Method)

Make support class lighter, by moving methods to Class and Method info. (D24,
Move Method)

In the first answer, D15 renamed a method to fix a spelling error, while in
the second answer, D24 moved some methods to a utility class to make the
master class lighter.

Bug Fixing. In the case of 3 BCs (5%), the motivation is related with fixing
a bug, as in the following answers:

The iterator() method makes no sense for the cache. We can not be sure that
what we are iterating is the right collection of elements. (D05, Remove Method)

The API element could cause serious memory leaks. (D12, Change in Param-
eter List)

In the first answer, D05 removed a method with an unpredicted behavior
in some cases. In the second answer, D12 removed a flag parameter related to
memory leaks.

Other Motivations. This category includes six BCs whose motivations do
not fit the previous cases. For example, BCs performed to remove deprecated
dependencies (2 instances), BCs to adapt to changes in requirements and speci-

14 Aline Brito et al.

21%

32%

37%

Change in
Parameter List

Rename Method

Move Class

0 4 8 12
Occurrences

(a) BCs to implement new features

12%

24%

29%

Change in
Parameter List

Add Final Modifier

Remove Class

0 4 8 12
Occurrences

(b) BCs to simplify APIs

7%

14%

79%

Move Class

Rename Method

Move Method

0 4 8 12
Occurrences

(c) BCs to improve maintainability

Fig. 9 Top-3 most common BCs, grouped by motivation

fication (2 instances), BCs to eliminate trademark conflicts (1 instance), and
one BC with an unclear motivation, i.e., we could not understand the specific
answer provided by the developer.

Summary: BCs are mainly motivated by the need to implement new features
(32%), to simplify the API (29%), and to improve maintainability (24%).

Figure 9 shows the top-3 most common BCs due to Feature Addition, API
Simplification, and to Improve Maintainability. move class is the most com-
mon BC when implementing a new feature, with 7 occurrences. Specifically,
when working on a new major release, developers tend to start by performing
structural changes in the code, which include moving classes between packages.
To simplify APIs, developers usually remove classes (5 instances) and also
add a final modifier to methods (4 instances). The latter is considered a sim-
plification because it restricts the usage of API methods; after the change, the
API methods cannot be redefined in subclasses, but only invoked by clients.
Finally, it is not a surprise that BCs performed to improve maintainability
are refactorings. In this case, the three most popular BCs are due to move
method (11 instances), rename method (2 instances), and move class (1
instance). Interestingly, move class is also used when implementing a new
feature.

You Broke My Code 15

14%

86%

Large

Moderate

Small

0 1 2 3 4 5 6
Occurrences

Fig. 10 Effort required on clients to migrate

Summary: BCs due to refactorings are performed both to improve main-
tainability and to enable and facilitate the implementation of new features.

4.3 What Is the Effort on Clients to Migrate?

We also added a question in the survey about the effort required on clients to
adapt to the studied BCs. The goal is to collect their perceptions on this effort;
further interviews can be conducted to check whether these perceptions match
the client’s perceptions or the real effort required on clients to migrate to the
new versions of the studied APIs. We organized the answers of this survey
question in three levels: minor, moderate, or major effort. Seven developers
answered the question. As presented in Figure 10, six developers estimated
that the effort to use the new version is minor, while one answered with a
moderate effort; none of them considered the update effort as a major one.

For example, developer D04—who moved a class between packages with
the purpose of improving maintainability —estimates a minor effort on clients
to use the new version:

Work required should be minor, since it is just a change of a package. (D04,
Move Class)

A single developer (D09) answered that a class removal may require a mod-
erate effort on clients. Indeed, the removed class is very simple, having a single
method with a single statement that instantiates an object:

The complexity will depend largely on the size of the project and how they use
the library. (D09, Remove Class)

Summary: According to the surveyed developers, the effort on clients to
migrate to the new API versions is minor.

4.4 Why didn’t you Deprecate the Old Implementation?

17 developers answered this survey question. As presented in Figure 11, they
presented three reasons for not deprecating the elements impacted by the BCs.

16 Aline Brito et al.

22%

33%

44%

Minor Change/Impact

Other Motivations

Increase Maintainability Effort

0 2 4 6 8
Occurrences

Fig. 11 Reasons for not deprecating the old versions

Increase Maintenance Effort. 8 developers mentioned that deprecated el-
ements increase the effort to maintain the project, as in the following answer:

In such a small library, deprecation will only add complexity and maintenance
issues in the long run. (D16)

Minor Change/Impact. Four developers argued that the performed BCs
require trivial changes on clients or that the library has few clients, as in the
following answers:

Because the fix is so easy. (D15)

The main reason is that [the number of] users is small. (D14)

Other motivations include the following ones: library is still in beta (1
developers), incompatible dependencies with the old version (1 answer), and
trademark conflicts (1 answer). Finally, one developer forgot to add deprecated
annotations.

Summary: Developers do not deprecate elements affected by BCs mostly due
to the extra effort to maintain them.

4.5 How do Developers Document Breaking Changes?

This question was answered by 18 developers. Among the received answers,
14 developers stated they intend to document the BCs. We analyzed these an-
swers and extracted seven different documents they plan to use to this purpose
(see Figure 12). Release Notes and Changelogs are the most common docu-
ments, mentioned by four developers each, followed by JavaDoc (3 developers).
Finally, four developers do not plan to document the BCs. For example, two
of them considered the changes trivial and self-explained.

Summary: BCs are usually documented using release notes or changelogs.

You Broke My Code 17

6%

11%

11%

11%

17%

22%

22%

README

Examples

Migration Guide

Website

JavaDoc

Changelog

Release Notes

0 1 2 3 4

Occurrences

Fig. 12 How do you plan to document the detected BCs?

5 Stack Overflow Study

In this second study, we mine questions on Stack Overflow to better understand
the most common problems faced by clients due to breaking changes. Specifi-
cally, this Stack Overflow analysis provides a complementary view: while the
Firehouse Study focused on API developers, this study has its focus on ques-
tions stated by API clients on Stack Overflow regarding breaking changes.
Essentially, in the first study, we revealed the reasons for breaking changes
performed by owners in their APIs; in this second study, we aim to assess
another perspective: whether API clients are passive to breaking changes or
active in the sense they look for solutions to deal with these changes. In addi-
tion, this second study expands the analysis to other ecosystems to investigate
whether client reactions are restricted to Java or also happen in other software
ecosystems. Therefore, we propose four new research questions:

1. Who are the authors of questions about breaking changes? With this ques-
tion, our goal is to confirm that most questions about breaking changes
posted on Stack Overflow come from developers who have been impacted
by broken APIs (these developers are the main target of this second study,
as mentioned before).

2. What are the most common questions about breaking changes? With this
question, we have two goals. First, we intend to confirm that client de-
velopers usually resort to Stack Overflow to find strategies to overcome
breaking changes. Second, we also intend to reveal other questions related
to breaking changes posted on Stack Overflow.

3. Which ecosystems have more questions about breaking changes? Since our
first study focused on Java, our goal with this question is to investigate
whether (and how often) breaking changes happen in other ecosystems.

4. Which documentation types are mentioned in posts about breaking changes?
With this question, we aim to check whether developers refer to documenta-
tion artifacts when posting questions or answers on Stack Overflow related
to breaking changes.

18 Aline Brito et al.

Fig. 13 Example of Stack Overflow question about breaking changes

Section 5.1 presents our methodology to select Stack Overflow questions
related to breaking changes. Section 5.3 to Section 5.5 detail the study results,
by presenting answers for the proposed research questions.

5.1 Selecting Stack Overflow Questions

Stack Overflow is the de facto question & answer platform for software de-
velopment [2, 40]. As in October 2018, it hosts over 14M questions and 19M
answers covering a broad set of topics, helping more than 50 million devel-
opers to learn and share their knowledge.7 Each question on Stack Overflow
can receive several answers, and the community is responsible for evaluating
the quality of the proposed answers, giving a positive or a negative score [40].
Similarly, questions also have a reputation, so users can indicate a question
as favorite and give positive or negative score as well. When a user marks a
question as favorite, he/she starts to receive notifications about updates in it;
therefore, this is a way to show interest on the topic. In addition, Stack Over-
flow managers can close bad or incomplete questions.8 Figure 13 presents an
example of a Stack Overflow question about a class removed from AutoMap-
per, a library to map objects in .NET.9 It has 11 positive votes and three

7 https://stackoverflow.com/company
8 https://meta.stackoverflow.com/questions/tagged/closed-questions
9 https://stackoverflow.com/questions/35233989

You Broke My Code 19

favorite votes. The best answer has 14 positive votes. In his answer, an user
recommends to use a new interface, as illustrated by a provided source code
example.

We use the dataset provided by Stack Exchange10 to mine Stack Overflow
questions related to breaking changes. Besides weekly updated data, this in-
frastructure includes an online tool to run T-SQL queries. As a first step, we
run a script to select all questions with the term “breaking change(s)” on the
Title or Body fields (on August, 2018); this process resulted in 1,574 questions.
From this first selection, we removed (i) questions without favorite votes and
questions with score less than or equal to zero, (ii) questions without at least
one answer with score greater than zero, and (iii) that have been frozen by
SO curators. In summary, our goal was to clean the initial set of questions to
keep only the most important and also the ones that follow the Stack Over-
flow guidelines. This process resulted in 352 questions and 881 answers. We
use labels Q001 to Q352 to indicate the questions, and labels A001 to A881
to refer to the developers answers.

Next, the first author of this paper manually inspected the 352 questions to
remove false positives, i.e., questions that do not focus on breaking contracts.
For instance, we removed question Q181,11 which despite of using the term
“breaking changes”, the developer is asking for instructions to list files changed
under Mercurial revision control system:

So there was a new branch created where we made some breaking changes to
the codebase. Now we are going to merge, but before that I want to get a list
of all the files that were changed in the branch. How can I get a list of files?
(Q181)

As a second example of false positive, we removed questions where the user
classified his problem as caused by breaking changes (in the question), but it
was a misleading classification. For example, in question Q121,12 the developer
asks about a possible breaking change in the .NET platform:

I recently upgraded my website from ASP.NET MVC3 (Razor) to MVC4 (Ra-
zor2), and in doing so found what seemed like a breaking change in the Razor
view engine... Is this a known and documented change in the Razor view en-
gine?(Q121)

Another user answered that the reported behavior is not indeed due to a
breaking change but to a bug:

This is indeed a bug we decided not to fix, note that the syntax is incorrect as
there is no transition between C# and markup in this case. (A423)

Finally, we also removed questions referring to breaking changes in pro-
gramming languages and compilers, since they are outside the scope of this

10 https://data.stackexchange.com/help
11 https://stackoverflow.com/questions/8929130
12 https://stackoverflow.com/questions/15543841

20 Aline Brito et al.

2

1

10

50

200

Fa
vo

rit
e

(lo
g

sc
al

e)

Favorite

6

1

10

50

S
co

re
s

(lo
g

sc
al

e)

Scores

1590

100

1000

10000

50000

V
ie

w
s

(lo
g

sc
al

e)

Views

Fig. 14 Numbers of favorite votes, score, and views of the 110 Stack Overflow questions

paper. Specifically, we removed 13 questions. Interestingly, most cases involve
C/C++ (6 occurrences, 46%). As an example, we removed the following ques-
tion, which includes a discussion about the GCC compiler:13

The above code works fine in GCC 4.4.7 and 7.1 and later. It gives an error in
GCC 4.5.4 and later releases. So my question is why was this breaking change
introduced in GCC? (Q322)

As a result, we manually removed 242 questions, resulting in 110 questions
covering breaking changes in different programming languages and ecosys-
tems. Figure 14 presents the distribution of number of favorite votes, scores,
and views of the 110 selected questions. The median is two favorite votes per
question, with a minimum of 1 and a maximum of 179 votes. The score ranges
from 1 to 192, and the median is 6. Q01714 is the question with the highest
number of favorites and scores. In this question, a developer asks about break-
ing changes in the .NET platform. Finally, the number of views ranges from 35
to 48,030, and the median is 1,590. Question Q00415 is the most viewed one,
and it includes a discussion about backward compatibility in Internet Explorer
(IE). Finally, the first author and second authors of this paper analyzed and
classified each selected question, using thematic analysis (the same technique
described in Section 3.3) to provide answers to the four proposed research
questions.

5.2 Who are the authors of questions about breaking changes?

Figure 15 shows the distribution of the studied questions, considering two types
of authors: clients and owners of the broken interfaces. To identify whether
an author is API an owner, we carefully considered the question’s context. In
cases we were not able to infer the author category, we stated it as unclear. For
example, we classified the author of Q062116 as an owner because he explicitly

13 https://stackoverflow.com/questions/48854954
14 https://stackoverflow.com/questions/1456785
15 https://stackoverflow.com/questions/19638981
16 https://stackoverflow.com/questions/2678744

You Broke My Code 21

7%

29%

64%

Unclear

Owners

Clients

0 20 40 60 80

Occurrences

Fig. 15 Who are the authors of questions about breaking changes?

Table 4 What are the most common questions about breaking changes?

Question Occur. (%) Clients Owners

how to overcome breaking changes 49 45 49 0
how to organize and manage dependencies 17 15 5 12
do new version have breaking changes 14 13 11 3
how to avoid breaking changes 9 8 0 9
how to deal with deprecated elements 6 5 4 2
general Discussions 15 14 1 6

mentions he is designing a REST API:

I am designing a REST API for a web application. I want to clearly version
the API, so that the interface can be changed in the future without breaking
existing services. (...) . (Q062)

As expected, most questions (64%) come from clients, i.e., from developers
impacted by the breaking changes. However, almost 29% of the questions are
posted by the owners of the broken code, i.e., by developers directly or indi-
rectly responsible for breaking the interfaces. Although our goal is to study
clients impacted by breaking changes, we also decided to include in our analy-
sis the questions and answers posted by owners (but they are usually discussed
separately). Finally, it is also important to highlight that we were not able to
infer the author category in the case of eight questions (7%).

Most Stack Overflow questions about breaking changes come from developers
impacted by these changes (64%). However, we also found questions posted
by the owners of the broken code (29%).

5.3 What are the most common questions about breaking changes?

As reported in Table 4, we found six main groups of questions about breaking
changes in Stack Overflow. We discuss these questions and give examples in
the following paragraphs. We also point the number of questions related by

22 Aline Brito et al.

the different profiles (owners and clients).17

How to overcome breaking changes? In 49 questions (45%), developers
essentially ask how to overcome a breaking change found in an API or other
system they are using. In some questions, they mention the documentation
about the breaking change is incomplete or missing. Therefore, they ask how
to overcome the detected breaking change. As an example, in question Q12618

the developer exposes how hard is it to migrate from Hibernate version 5.0 to
5.1:

I’ve recently updated Hibernate from 5.0 to 5.1 and the SchemaExport API has
changed. The migration docs mention this change, but do not explain how to
use the newer API. Moreover, I have not been able to find any other supporting
sample to fix the breaking change. (Q126)

As a second example, in question Q080,19 the developer asks about a prob-
lem when updating from Angular 1.2 to 1.3:

I am trying to set up a decorator for my controllers. . . I have it configured to
work in Angular 1.2.x, but there are some breaking changes from 1.3.x onwards
that is breaking the code. (Q080)

Out of 49 questions in this category, 38 questions (78%) have at least one
accepted answer (i.e., an answer that actually helped the developers to deal
with the issue). We manually analyzed these answers and classified them into
three main themes: Design Changes, Idiom Changes, and Others. First,
Design Changes (21 occurrences, 55%) relates to cases where a major design
change in the API is propagated to clients. For example, the accepted answer
A65720 mentions a fundamental design change in the way that permissions are
checked in Android version 6.0:

As of Android 6.0, permission behaviour has changed to runtime. To use a
feature that requires a permission, one should check first if the permission is
granted previously. . . . If permission isn’t granted or it is first time, a request
for permission should be made. (A657)

Next, Idiom Changes (13 occurrences, 34%) includes answers recom-
mending minor idiomatic modifications on clients in order to adapt to breaking
changes, e.g., adding or removing parameters, configuration options or usage
properties. As an example, the accepted answer A84721 details a solution that
involves only adding a new parameter on clients to fix the issue:

Adding the following to OnModelCreating in ApplicationDbContext.cs fixed the
problem for me (A847)

17 The users profile are unclear in 8 questions classified as general discussions.
18 https://stackoverflow.com/questions/35993598
19 https://stackoverflow.com/questions/32442605
20 https://stackoverflow.com/questions/32151603#32151901
21 https://stackoverflow.com/questions/45725330#45743449

You Broke My Code 23

Finally, in the case of four questions (11%) is was not clear the category of
the change suggested in the accepted answer.

Do new version have breaking changes? In 14 questions (13%), devel-
opers use Stack Overflow to discuss the costs and risks to migrate to new
versions, due to possible breaking changes. In these questions, the ultimate
goal is to quantify the effort required by the migration and therefore better
support their decision on whether to migrate (or not) to a new version. For in-
stance, in question Q086,22 the developer asks about possible breaking changes
in .NET:

My application is based on .NET 4.0 and EF 4. I’m now looking at upgrading
to the latest versions. Are there any breaking changes or behavioral differences
that may adversely affect my application? How easy is the upgrade path? Does
upgrading to EF 5 require any code changes or other work? Are there any new
features related to code-first that would be worth upgrading for? (Q086)

As a second example, a developer uses question Q10923 to discuss possible
breaking changes in a new NHibernate version, a framework to mapper objects
in .NET:

What kinds of considerations are there for migrating an application from NHiber-
nate 1.2 to 2.0? What are breaking changes vs. recommended changes? Are
there mapping issues? (Q109)

Interestingly, in three questions the developers look for tools and techniques
to detect breaking changes. As an example, in question Q156,24 a developer
asks for a tool to check the compatibility between assemblies on .NET :

I’m looking for a tool that will be able to automate the process of verifying the
backward compatibility between .NET assemblies. (Q156)

How to avoid breaking changes? In 9 questions (8%), the developers—of
them owners—ask for help on how to maintain backward compatibility, when
evolving their systems. For instance, a developer opened question Q07225 to
discuss error handling strategies. He mentions a plan to change a method’s
signature by adding a new exception; however, as this exception represents a
breaking change, he is looking for alternative solutions:

That would mean adding a new Exception to the method’s signature and that
would be a breaking change to the Java API. We would like to have a more
robust solution that would not result in breaking changes. (Q072)

How to organize and manage dependencies? Assuming that breaking
changes in some cases are inevitable, 17 developers (15%) ask for solutions on

22 https://stackoverflow.com/questions/12137939
23 https://stackoverflow.com/questions/27243
24 https://stackoverflow.com/questions/8279299
25 https://stackoverflow.com/questions/19315263

24 Aline Brito et al.

how to organize and manage multiple versions (we were also able to confirm
that 12 of such developers are owners). As an example, we present question
Q04226, where a developer asks for help on handling dependencies to Go li-
braries:

In Golang, we can specify open source libraries on GitHub as dependencies.
This will try to look for a branch based on your Go version and default to mas-
ter if I understand correctly. So there is no way to import a specific release of
a dependency. What is the best practice to manage dependencies in Go then?
Is it to create new modules for major versions with breaking changes? (Q042)

In another example (question Q16227), the developer asks for a suggestion
on to avoid npm packages with broken contracts:

How can I install the most recent package that does not have breaking changes?
(Q162)

How to deal with deprecated elements? In six cases (5%), developers ask
questions related to deprecated elements. For example, in question Q075,28 a
developer asks for a replacement to a deprecated element in Angular:

I’m updating my unit tests for Angular2 RC5 (...) The changelog notes the
following breaking change: addProviders is deprecated, use TestBed.configure-
TestingModule instead. But that now throws an error (...) (Q075)

Q34029 (an API owner) asks a very specific questions related to breaking
changes and deprecated elements in C macros:

I’m trying to handle a breaking change in a library gracefully. I want users to
have a nice, clear warning whenever they use an old macro, so it will be clear
that they need to migrate their code to using the new macro. (Q340)

General Discussions. 15 questions (14%) are basically general discussions
and comments about breaking changes. For example, a developer opened a
post Q01730 with a list of breaking changes that can impact .NET clients (and
asked other users to comment, extend, or revise his list). This post—entitled
A definitive guide to API-breaking changes in .NET—has 193 upvotes, 180
favorite votes, and it has been visualized more than 20K times:

I would like to gather as much information as possible regarding API version-
ing in .NET/CLR, and specifically on how API changes do or do not break
client applications. (Q017)

26 https://stackoverflow.com/questions/30300279
27 https://stackoverflow.com/questions/39533030
28 https://stackoverflow.com/questions/38985159
29 https://stackoverflow.com/questions/44642302
30 https://stackoverflow.com/questions/1456785

You Broke My Code 25

19%

10%

22%

49%

Other

Java

Javascript

.NET Plataform

0 10 20 30 40 50 60

Occurrences

Fig. 16 Which ecosystems have more questions about breaking changes?

Despite the opposite answers reported in the firehouse interviews, breaking
changes tend to have an important impact on API clients. For example, more
than 40% of the studied Stack Overflow questions from developers asking
how to overcome specific breaking changes. Other posts refer to manage-
ment and organization of multiple versions (15%), general discussions and
commentaries (14%), and the prevalence of breaking changes in new releases
(13%).

5.4 Which ecosystems have more questions about breaking changes?

As reported in Figure 16, most studied questions are about breaking changes
in three ecosystems: .NET, Javascript, and Java. We reinforce, however, that
these results are very specific to the collected SO dataset and they are not
representative of the real state of affairs.

The ecosystem with more questions is .NET (54 questions, 49%), covering
breaking changes on several .NET frameworks and tools. Q25931 show an ex-
ample, a developer asks tips to handle breaking changes on Entity Framework,
an object-relational mapper on this plataform, because he had a problem when
migrating from version 5 to 6:

“I’m in the process of migrating a code base from the Entity Framework 5
to 6... EF6 contains breaking changes that include removing classes out of
System.Spatial over to System.Data.Entity.Spatial”... Anyone with any
suggestion?” (Q259)

JavaScript is the second ecosystem with the highest number of questions
(24 questions, 22%); interestingly, most of these questions refer to Angular
(10 questions), a MVC-based front-end framework which recently evolved to
a new release with major design changes. This category also includes ques-
tions about npm, a popular package manager for JavaScript. The third most
mentioned ecosystem is Java (11 questions, 10%); covering questions about

31 https://stackoverflow.com/questions/19614954

26 Aline Brito et al.

15%

15%

31%

38%

Changelog

Release Notes

Migration Guide

Website

0 1 2 3 4 5 6

Occurrences

Fig. 17 Which documents are mentioned in posts about breaking changes?

breaking changes on Java frameworks, as well as in the Android apps. Other
questions involve ecosystems with few occurrences, such as Ruby on Rails (two
questions), R (one question), and Go (one question) as well as questions where
the developers did not point the underlying ecosystem.

Despite the higher concentration of questions in the .NET Platform, we
cannot—and is not our goal to—assure this ecosystem has more breaking
changes than others; further analysis should be done in this direction.

5.5 Which documents are mentioned in posts about breaking changes?

In only 13 questions (12%), Stack Overflow users refer to official documents in
their posts to confirm breaking changes or to recommend migration strategies,
as presented in Figure 17. These references include an official website (5 ques-
tions, 38%), migration guides (4 questions, 31%), release notes and changelog
files (both with two questions and 15%, each one). In the other cases, the
questions are answered by using code snippets and/or by providing links to
other non-official documents, such as questions in other Q&A platforms (e.g,.
Google Groups) or to specific commits. For example, in question Q00432 the
user refers to a problem he is facing in an Internet Explorer (IE) plug-in:

It appears that typeof(window.ActiveXObject) results in undefined, whereas
in IE10 mode, it results in function(...). Does anybody know why this changed,
or where I can find a list of these types of differences between IE10 and IE11
so that I can figure out what other breaking changes there are? (Q004)

Another developer answered by linking to Internet Explorer’s API website:

You can’t use that check for IE11: <link to doc> . . .window.ActiveXObject
property is hidden from the DOM. (This means you can no longer use the
property to detect IE11.) (A496)

These documents are also among the ones mentioned by API developers in
the firehouse interviews (Section 4.5). However, the different contexts do not
allow a comparison of both studies. Mostly because the firehouse interviews

32 https://stackoverflow.com/questions/19638981

You Broke My Code 27

focus on API owners’ answers, and the Stack Overflow study includes ques-
tions reported by both owners and clients. Furthermore, the results presented
in Figure 17 refer to different programming languages and ecosystems (e.g,
Java, .NET, JavaScript), while the first study focused only on Java APIs.

The most common documents reported by Stack Overflow users to confirm
breaking changes or to recommend migration strategies are websites (5 ques-
tions, 38%) and migration guides (4 questions, 31%).

6 Implications

This section presents the study implications to language designers, tool builders,
researchers, and practitioners.

Language Designers: In the first study, among the 151 Breaking Changes Can-
didates (BCCs) with developers’ answers, only 59 were classified as true Break-
ing Changes (BCs). The other BCCs are mostly changes in internal or low-level
APIs or changes performed in experimental branches. Since they are designed
for internal usage only, developers do not view changes in these APIs as BCs.
However, previous research has shown that occasionally internal APIs are used
by external clients [9,12–14,18,23,28]. For example, clients may decide to use
internal APIs to improve performance, as a workaround for bugs, or to bene-
fit from undocumented features. This usage is only possible because internal
APIs are public, as the official and documented ones; and their usage is not
checked by the Java compiler. To tackle this problem, a new module system
was recently introduced in Java (since version 9), which allows developers to
explicitly declare the module elements they want to make available to exter-
nal clients. The Java compiler uses these declarations to properly encapsulate
and check the usage of internal APIs. Therefore, our first study reinforces the
importance of this new module system, since we confirmed that changes in
internal API elements are frequent. We also confirmed that API developers
use the public keyword in Java with two distinct semantics (“public only to
my code” vs “public to any code, including clients”).

Tool Builders: apidiff is an useful tool both to API developers and clients.
API developers can use the tool to document changes in their APIs, e.g., to
automatically generate changelogs or release notes. API clients can also rely
on apidiff to produce these documents, in order to better assess the effort
to migrate to API versions that are not properly documented. In fact, in the
Stack Overflow study, we identified two questions where developers ask for
tools similar to apidiff. However, these questions refer to .NET platform.

Researchers: Although based on a limited number of 59 BCs, the firehouse
interviews reveal opportunities to improve the state-of-the-art on API design,
evolution, and analysis. First, the study suggests that BCs are often moti-

28 Aline Brito et al.

vated by the implementation of new features and that refactorings are usu-
ally performed at that moment, to support the implementation of the new
code. In other words, the implementation of new features does not only ex-
tend the API with new elements, it may require changes in the signature of
existing ones. In fact, a recent study on refactoring practices considering all
types of GitHub projects, i.e., not restricted to libraries and frameworks, also
shows that refactoring is mainly driven by the implementation of new require-
ments [51]. Therefore, we envision a new research line on techniques and tools
to recommend refactorings and related program redesign operations, when a
new version of an API is under design. In other words, the focus should be on
API-specific remodularization techniques, instead of global remodularization
approaches, as commonly proposed in the literature [1,3,33,42,52]. Second, the
study suggests that BCs are also motivated by a desire to reduce the number of
API elements or reduce the possible usages of some elements (e.g., by making
them final). Therefore, we envision research on API-specific static analysis
tools (or API-specific linter tools), which could for example recommend the
removal of useless parameters in API methods (as we found in two BCs), the
insertion of a final modifier (as we found in six BCs) or even the removal
of underused methods and classes (as we found in two BCs). The benefit in
this case would be the recommendation of these changes at design time or
during early usage phases, before the affected API elements gain clients and
the change costs and impact increase. Third, the answers of the last survey
question show that some API developers might be reluctant to use the depre-
cation mechanism provided by Java. Essentially, they argue that deprecation
increases maintenance burden, by requiring updates on multiple versions of the
same API element. Therefore, we also envision research on new and possibly
lightweight mechanisms to API versioning. It is also possible to recommend
the traditional mechanism only in special cases, particularly when the BCs
might impact a large number of clients or require complex changes. Fourth,
the Stack Overflow study suggests that researchers should also consider the
impact of breaking changes in other ecosystems, e.g., .NET and JavaScript.

Practitioners: Our studies also provide actionable results and guidelines to
practitioners, especially to API developers. First, we detected many uncon-
firmed BCCs in packages that do not have the terms internal or experimental
(or similar ones) in their names. We recommend the usage of these names to
highlight to clients the risks of using internal and unstable APIs. Second, the
study also reveals that some BCs are caused by trivial programming mistakes,
e.g., parameters that are never used. Since APIs are the external communi-
cation ports of libraries and frameworks, it is important they are carefully
designed and implemented. Third, we listed good practices followed by devel-
opers to document BCs, for example, changelogs and release notes, which were
also confirmed in the Stack Overflow study.

You Broke My Code 29

7 Threats to Validity

External Validity. As usual in empirical software engineering, our findings
are restricted to the studied subjects and cannot be generalized to other sce-
narios. Nevertheless, we daily monitored a large dataset of 400 Java libraries
and frameworks, during a period of 116 days (almost 4 months). During this
time, we questioned 102 developers about the motivations of breaking changes
right after they had been performed. Due to such numbers, we consider that
our findings are based on representative libraries, which were assessed during
a large period of time, with answers provided by developers while the subject
was still fresh in their minds. Moreover, our analysis is restricted to syntactical
breaking changes, which result on compilation errors in clients. BCs that mod-
ify the API behavior without changing its signature, as studied by Mostafa et
al. [36] and Mezzetii et al. [32], are outside of the scope of this paper. We also
can not guarantee the 59 BCs considered in the first study are part of new
releases. However, the chances of the reverting such changes are small, since
they were confirmed as BCs by the survey developers, which also estimated
their impact on clients. Besides that, our follow up study focusing on the client
perspective only comprises Stack Overflow questions and the English idiom.
However, there are a significant number of studies conducted on Stack Over-
flow [2, 34, 41, 57], since it is a popular Q&A platform, having a community
with more than 50M developers and different profiles.

Internal Validity. First, we use apidiff to detect breaking changes between
two versions of a Java library. Although this tool was implemented and used in
our previous research [55], an error on its result would introduce false positives
in our analysis. To mitigate this threat, we considered the breaking changes
provided by the tool as candidates and only assessed those confirmed by their
developers, which represents 39% of BCCs (see Sections 4.1). Second, we re-
inforce the subjective nature of this study and its results. As discussed in
Section 3.3 and Section 5.1, a thematic analysis was performed to elicit the
reasons that drive API developers to introduce BCs, to identify the recurrent
themes faced by clients due to breaking changes on Stack Overflow questions,
and to classify the users in clients or owners. Although this process was rigor-
ously followed by two authors of the paper, the replication of this activity may
lead to a different set of reasons. To alleviate this threat, special attention was
paid during the sequence of meetings held to resolve conflicts and to assign the
final themes. Third, against our belief, the trustworthiness and correctness of
the responses in the survey study is also a threat to be reported. To mitigate
it, we strictly sent emails in no more than few days after the commits. This
was important to guarantee a higher response rate and reliable answers, once
the modifications were still fresh on developers’ minds.

Construct Validity. The first threat relates to the selection of the Java
libraries. As discussed in Section 3.1, we automatically discarded, from the
top-2,000 most popular Java projects on GitHub, the ones that do not have
the following keywords in their short description: library(ies), API(s), frame-

30 Aline Brito et al.

work(s). Next, we manually discarded those that, although containing such
words, do not actually represent a library. Since this process is conservative in
providing a reliable dataset of projects that are libraries, we can not guarantee
that we retrieved the whole set of actual libraries from the 2,000 projects. Sec-
ond, our results stand on the agreement of developers on the detected BCCs.
As observed in Section 4.1, most developers pointed out that the detected
changes refer to internal or low-level APIs, mentioning that it is unlikely that
they could break clients. However, previous research has shown that occasion-
ally internal APIs are used by external clients [9, 12–14, 18, 23, 28]. Therefore,
we might have excluded BCCs that could actually impact clients, but we de-
cided to follow the conservative decision of only considering BCCs perceived
by developers as having a high potential to break existing clients. Third, we
discarded commits with more than seven days from our analysis, inspired by
similar decisions in other Firehouse Interview studies [29, 51]. In such stud-
ies, this strategy is commonly adopted to increase the chances of receiving
answers. As a downside, it discards from the analysis pull-requests including
long and lengthy discussions, before being accepted. Fourth, despite we mined
the complete Stack Overflow dataset, we only inspected questions with the
term breaking changes(s) on the fields Body or Title. Then, we manually in-
vestigated all questions to discard the ones not necessarily focusing on broken
contracts. In addition, we focused on questions with good evaluation by the
community (favorite votes and scores). Consequently, we can not guarantee
that we retrieved the whole set of Stack Overflow questions about breaking
changes, however, the ones analyzed do represent the most relevant according
to the community.

8 Related Work

We organized related work in four subsections: (a) studies about breaking
changes in APIs; (b) field studies using the firehouse interview method; (c)
field studies exploring Q&A websites; and (d) other studies on API evolution.

8.1 Studies on Breaking Changes

In a previous short paper, we report a preliminary study to reveal the reasons
of API breaking changes in Java [56]. In this first study, we also use apidiff to
detect breaking changes. We contacted the principal developers of 49 libraries,
asking them about the reasons of all breaking changes detected by apidiff in
previous releases of these libraries. By contrast, in this new study we contacted
the precise developers responsible by a breaking change, right after it was
introduced in the code; and we asked them to reveal the reasons for this specific
breaking change. Furthermore, to identify breaking changes, we monitored all
commits of a list of 400 Java libraries, during 116 days. As a consequence
of the distinct methodologies, in the first study we received valid answers of

You Broke My Code 31

only seven developers (while in the present study we received 56 answers).
From these seven answers, we extracted five reasons for breaking changes:
API Simplification, Refactoring, Bug Fix, Dependency Changes, and Project
Policy. The first four are also detected in the present study. However, the major
reason for breaking changes reported in the present study (New Feature) was
not detected in the preliminary one.

In another related study [55], we investigate breaking changes in 317 real-
world Java libraries, including 9K releases and 260K client applications. We
show that 15% of the API changes break compatibility with previous versions
and that the frequency of breaking changes increases over time. Using data
from the BOA ultra-large dataset [20], we report that less than 3% of the
breaking changes impact clients. To reach this result, we considered all break-
ing changes detected by apidiff. However, in the present paper, we found that
only 39% of the BCCs are viewed by developers as having a major potential
to break existing clients.

Kula et al. [27] focus on the impact of API refactoring on client systems, by
analyzing the versions of eight popular libraries (guava, httpclient, javas-
sist, jdom, joda-time, log4j, slf4j, and xerces). In this empirical study,
Japi-cmp33 library is used to compute the differences between two library ver-
sions, while ref-finder is used to detect refactoring actions [43]. Among their
major results, the authors show that 75% of the refactoring operations break
client applications, and that breaking changes are more likely to happen on
internal APIs. In our study, we found that the most common reason to break
contracts was also refactoring (47%) and most breaking changes were classified
as internal by the surveyed developers (61%). However, the authors did not
contact developers to understand the reasons behind the breaking changes nor
to confirm whether they were indeed true positives. Dig and Johnson [19] stud-
ied API changes in five frameworks and libraries (Eclipse, Mortgage, Struts,
Log4J, and JHotDraw). They report that more than 80% of the breaking
changes in these systems were due to refactorings. By contrast, using a large
dataset of 400 popular Java libraries and frameworks, we also found that BCs
are usually related to refactorings, but at a lower rate (47%). Moreover, we
listed two other important motivations for breaking changes: to support the
implementation of new features and to simplify and reduce the number of API
elements. Bogart et al. [7] conducted a study to understand how developers
plan, negotiate, and manage breaking changes in three software ecosystems:
Eclipse, R/CRAN, and Node.js/npm. After interviewing key developers in
each ecosystem, they report that a core value of the Eclipse community is
long-term stability; therefore, breaking changes are rare in Eclipse. R/CRAN
values snapshot consistency, i.e., the newest version of every package should be
always compatible with the newest version of every other package in the ecosys-
tem. Once snapshot consistency is preserved, breaking changes are not a major
concern in R/CRAN. Finally, breaking changes in Node.js/npm are viewed as
necessary for progress and innovation. In the interviews, the participants also

33 https://github.com/siom79/japicmp

32 Aline Brito et al.

mentioned three general reasons for breaking changes: technical debt (i.e., to
improve maintainability), to fix bugs, and to improve performance. The first
two motivations appear in our study, but we did not detect breaking changes
motivated by performance improvements. However, these answers should be
interpreted as general reasons for breaking changes, as perceived by the inter-
viewed developers. By contrast, in our study the goal was to reveal reasons
for specific breaking changes, as declared by developers right after introducing
them in the source code of popular Java libraries and frameworks.

8.2 Studies using Firehouse Interviews

A firehouse interview is one that is conducted right after the event of interest
has happened [47]. The term relates to the difficulty of performing qualitative
studies about unpredictable events, like a fire. In such cases, researchers should
act like firemen after an alarm; they should rush to the firehouse, instead of
waiting the event to be concluded to start their research. In our study, the
events of interest are API breaking changes; and firehouse interviews allowed
us to collect the reasons for theses changes right after they were committed
to GitHub repositories. In software engineering research, firehouse interviews
were previously used to investigate bugs just fixed by developers [37, 38], but
using face-to-face interviews with eight Microsoft engineers. Silva et al. [51]
were the first to use firehouse interviews to contact GitHub developers by
email. Their goal was to reveal the reasons behind refactorings applied by
these developers; in this case, they also used a tool to automatically detect
refactorings performed in recent commits. They sent e-mails to 465 developers
and received 195 answers (42% of response ratio). Mazinanian et al. [29] used
a similar approach, but to understand the reasons why developers introduce
lambda expressions in Java. They sent emails to 351 developers and received
97 answers (28% of response ratio). In our study, we contacted 102 developers
and received 56 answers (55% of response ratio).

8.3 Studies on Stack Overflow

Stack Overflow is a popular question and answer platform for software devel-
opers, with more than 14M questions and 19M answers (as in October, 2018).
It covers distinct topics, from software tools and programming languages, to
software architecture and code design. Beside that, the community is diverse;
there are software developers with different ages and skills [5,34,53]. For these
reasons, several studies assess the data provided by this platform to under-
stand development practices [4–6,41,57].

In the context of software libraries, Ahasanuzzaman et al. [2] provided a
method to classify topics related APIs on Stack Overflow, while Wang et al. [53]
combined techniques to detect topics related API design. Zhang et al. [57] fo-
cused on assessing posts reporting API usage. By comparing API examples

You Broke My Code 33

from Stack Overflow and patterns extracted from GitHub, the authors show
that approximately 30% of the posts contain examples with possible problems
(e.g., change in API behavior). Stack Overflow is also used in studies outside of
the scope of APIs [4–6,41]. For instance, Pinto et al. [41] presented an empiri-
cal study to assess energy consumption questions. By analyzing approximately
300 questions, they presented five major themes reported by developers. As in
our study, the authors used thematic analysis technique to extract the themes
and mined the Stack Overflow dataset using specific keywords. Barua et al. [5]
presented a method to extract the major themes in Stack Overflow questions.
They highlighted the importance of Stack Overflow to better understand rele-
vant topics reported by developers and popular technologies. Among the top-
ics found by the proposed methodology, the authors cited the .NET ecosystem
in questions about development platforms. In our study, we also found the
.NET platform among the most popular ecosystems related to API breaking
changes. Bajaj et al. [4] focused on the analysis of web developers questions.
Beyer et al. [6] presented a technique to label the posts in seven defined cate-
gories. The authors pointed the relevance of the API change category, which is
useful for owners better understanding the clients needs (e.g, improving doc-
umentation). In fact, in our Stack Overflow study, some API clients requested
migration documents and tips to deal with backward incompatibility.

8.4 Studies on API Evolution

Several studies have been proposed to support API evolution and client de-
velopers. Chow and Notkin [15] present an approach where library developers
themselves annotate the changed methods with replacement rules. Henkel and
Diwan [21] propose a tool that captures and replays API evolution refactorings.
Kim et al. [25] support computing differences between two versions of a sys-
tem. Nguyen et al. [39] use graph-based techniques to help developers migrate
from one library version to another. Other studies focus on extracting API
evolution rules from source code. For example, Schafer et al. [50] mine library
change rules from client systems, while Dagenais and Robillard [18] suggest
API replacements based on how libraries adapt to their own changes. Also in
this context, Meng et al. [31] propose a history-based matching approach to
support API evolution.

In a large-scale study, Robbes et al. [46] assess the impact of API depreca-
tion in a Smalltalk ecosystem. Recently, the authors also evaluated the impact
in the context of the Java programming language [48, 49]. In this study, they
found that some API deprecation have large impact on the ecosystem under
analysis and that the quality of deprecation messages should be improved.
Jezek et al. [24] study 109 Java open-source programs and 564 program ver-
sions, showing that APIs are commonly unstable. Raemaekers et al. [44] in-
vestigate API stability with the support of four proposed metrics, based on
method removal and implementation change. In the context of mobile develop-
ment, McDonnell et al. [30] investigate stability and adoption of the Android

34 Aline Brito et al.

API. In this study, the authors show that APIs are updated on average 115
times per month, representing a rate faster than clients’ update.

Some studies investigate the usage and evolution of internal APIs, i.e., pub-
lic but unstable and undocumented APIs that should not be used by client
applications [12–14, 23, 28]. In this context, Businge et al. [12] study the sur-
vival of Eclipse plugins, and classify them in two categories: plugins depending
on internal APIs and plugins depending only on official APIs. In an extended
study [14], the authors present that 44% of 512 Eclipse plugins depend on inter-
nal APIs. In addition, the same authors investigate the reasons why developers
do use internal APIs [13]. For example, they detect cases where developers do
not read documentation (so they are not aware of the risks), but also cases
where developers deliberately use internal APIs to benefit from advanced fea-
tures, not available in the official APIs. Mastrangelo et al. [28] show that clients
commonly use the internal API sun.misc.Unsafe provided by JDK. Recently,
Hora et al. [23] studied the transition of internal APIs to public ones, aim-
ing to support library developers to deliver better API modularization.The
authors also performed a large analysis to assess the usage of internal APIs.
In our survey, several developers mentioned that the breaking changes hap-
pened in public but internal or low-level APIs that clients should not rely on.
Notice, however, that the related literature points in the opposite direction:
client developers tend to use internal APIs.

9 Conclusion

Libraries and frameworks are key instruments to promote reuse an increase
productivity in modern software development. Ideally, software libraries and
frameworks should provide stable and backward-compatible APIs to their
clients. However, the practice reveals that breaking changes (BCs) are com-
mon. In this study, we described a large-scale empirical study (400 libraries,
4-month long period, 282 possible breaking changes, 56 developers contacted
by email) to understand why and how developers break APIs in Java. We use
a tool named apidiff34 to detect these possible breaking changes. By using
a firehouse interview method, we found that BCs are mainly motivated by
the implementation of new features, to simplify the number of API elements,
and to improve maintainability. The most common BCs are due to refactor-
ings (47%); regarding the programming elements affected by BCs, most are
methods (59%). According to the surveyed developers, the effort on clients
to migrate to new API versions, after BCs, is minor. We also listed some
strategies to document BCs, such as release notes and changelogs.

Besides that, this paper includes a follow up study, focusing on the other
protagonist of this story: the developers who depend on components affected by
backward incompatibility. By mining 110 questions on Stack Overflow related
to breaking changes in different programming languages and ecosystems, we

34 https://github.com/aserg-ufmg/apidiff

You Broke My Code 35

found that the most common topics involve developers asking help to overcome
breaking changes, discussions about management and organization of multi-
ple versions, and general topics about breaking changes. The most common
ecosystems affected by BCs are .NET (49%) and JavaScript (22%). Among the
110 questions, 70 (64%) are reported by clients, while 32 (29%) are opened by
owners, showing that backward compatibility is a real and challenging issue
faced by both the clients and the owners.

Last but not least, we presented an extensive list of empirically-justified
implications of our study, targeting four distinct audiences: programming lan-
guages designers, tool builders, software engineering researchers, and API de-
velopers. However, such implications should be viewed and interpreted with
care, since they are derived from considering only 59 BCs, and a single pro-
gramming language (Java). Moreover, the study focusing on the client systems
is limited to the assessment of 110 Stack Overflow question.

Further studies about motivations to break APIs can consider other soft-
ware ecosystems and programming languages (particularly, dynamic languages),
and other research methodologies (e.g., semi-structured interviews). Future
work may also expand our Stack Overflow study, including a broader set of
breaking change terms (e.g., “broken contract”, “backward incompatibility”,
etc) and problems reported on other Q&A platforms (e.g., Quora).

Acknowledgements We thank the 56 GitHub developers who participated in our study
and shared their ideas and practices about breaking changes. This research is supported by
grants from FAPEMIG, CNPq, and CAPES.

References

1. Abdeen, H., Ducasse, S., Sahraoui, H., Alloui, I.: Automatic package coupling and cycle
minimization. In: 16th Working Conference on Reverse Engineering (WCRE), pp. 103–
112 (2009)

2. Ahasanuzzaman, M., Asaduzzaman, M., Roy, C.K., Schneider, K.A.: Classifying Stack
Overflow posts on API issues. In: 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 244–254 (2018)

3. Anquetil, N., Lethbridge, T.C.: Experiments with clustering as a software remodular-
ization method. In: 6th Working Conference on Reverse Engineering (WCRE), pp.
235–255 (1999)

4. Bajaj, K., Pattabiraman, K., Mesbah, A.: Mining questions asked by web developers. In:
11th Working Conference on Mining Software Repositories (MSR), pp. 112–121 (2014)

5. Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking about? an analysis
of topics and trends in Stack verflow. Empirical Software Engineering pp. 619–654

6. Beyer, S., Macho, C., Pinzger, M., Penta, M.D.: Automatically classifying posts into
question categories on stack overflow. In: 26th Conference on Program Comprehension
(ICPC), pp. 211–221 (2018)

7. Bogart, C., Kästner, C., Herbsleb, J., Thung, F.: How to break an API: cost negotiation
and community values in three software ecosystems. In: 24th International Symposium
on the Foundations of Software Engineering (FSE), pp. 109–120 (2016)

8. Borges, H., Hora, A., Valente, M.T.: Understanding the factors that impact the pop-
ularity of GitHub repositories. In: 32nd IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 334–344 (2016)

9. Boulanger, J.S., Robillard, M.P.: Managing concern interfaces. In: 22nd IEEE Interna-
tional Conference on Software Maintenance (ICSME), pp. 14–23 (2006)

36 Aline Brito et al.

10. Brito, A., Xavier, L., Hora, A., Valente, M.T.: APIDiff: Detecting API breaking changes.
In: 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), Tool Track, pp. 507–511 (2018)

11. Brito, A., Xavier, L., Hora, A., Valente, M.T.: Why and how Java developers break APIs.
In: 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 255–265 (2018)

12. Businge, J., Serebrenik, A., van den Brand, M.: Survival of Eclipse third-party plug-ins.
In: 28th IEEE International Conference on Software Maintenance (ICSM), pp. 368–377
(2012)

13. Businge, J., Serebrenik, A., van den Brand, M.: Analyzing the Eclipse API usage:
Putting the developer in the loop. In: 17th European Conference on Software Mainte-
nance and Reengineering (CSMR), pp. 37–46 (2013)

14. Businge, J., Serebrenik, A., van den Brand, M.G.J.: Eclipse API usage: the good and
the bad. Software Quality Journal 23(1), 107–141 (2015)

15. Chow, K., Notkin, D.: Semi-automatic update of applications in response to library
changes. In: 12th International Conference on Software Maintenance (ICSM), pp. 359–
368 (1996)

16. Cliff, N.: Ordinal methods for behavioral data analysis. Psychology Press (2014)
17. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software en-

gineering. In: 5th International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 275–284 (2011)

18. Dagenais, B., Robillard, M.P.: Recommending adaptive changes for framework evolu-
tion. In: 30th International Conference on Software Engineering (ICSE), pp. 481–490
(2008)

19. Dig, D., Johnson, R.: How do APIs evolve? a story of refactoring. In: 22nd International
Conference on Software Maintenance (ICSM), pp. 83–107 (2005)

20. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: A language and infrastructure
for analyzing ultra-large-scale software repositories. In: 35th International Conference
on Software Engineering (ICSE), pp. 422–431 (2013)

21. Henkel, J., Diwan, A.: Catchup!: Capturing and replaying refactorings to support API
evolution. In: 27th International Conference on Software Engineering (ICSE), pp. 274–
283 (2005)

22. Hora, A., Robbes, R., Valente, M.T., Anquetil, N., Etien, A., Ducasse, S.: How do
developers react to API evolution? a large-scale empirical study. Software Quality
Journal 26(1), 161–191 (2018)

23. Hora, A., Valente, M.T., Robbes, R., Anquetil, N.: When should internal interfaces be
promoted to public? In: 24th International Symposium on the Foundations of Software
Engineering (FSE), pp. 280–291 (2016)

24. Jezek, K., Dietrich, J., Brada, P.: How Java APIs break - an empirical study. Information
and Software Technology 65(C), 129–146 (2015)

25. Kim, M., Notkin, D.: Discovering and representing systematic code changes. In: 31st
International Conference on Software Engineering (ICSE), pp. 309–319 (2009)

26. Konstantopoulos, D., Marien, J., Pinkerton, M., Braude, E.: Best principles in the
design of shared software. In: 33rd International Computer Software and Applications
Conference (COMPSAC), pp. 287–292 (2009)

27. Kula, R.G., Ouni, A., German, D.M., Inoue, K.: An empirical study on the impact of
refactoring activities on evolving client-used APIs. Information and Software Technology
93(C), 186–199 (2018)

28. Mastrangelo, L., Ponzanelli, L., Mocci, A., Lanza, M., Hauswirth, M., Nystrom, N.: Use
at your own risk: The Java unsafe API in the wild. In: 30th International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pp. 695–710 (2015)

29. Mazinanian, D., Ketkar, A., Tsantalis, N., Dig, D.: Understanding the use of lambda ex-
pressions in Java. In: 32nd International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pp. 85:1–85:31 (2017)

30. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption
in the Android ecosystem. In: 29th International Conference on Software Maintenance
(ICSM), pp. 70–79 (2013)

You Broke My Code 37

31. Meng, S., Wang, X., Zhang, L., Mei, H.: A history-based matching approach to iden-
tification of framework evolution. In: 34th International Conference on Software Engi-
neering (ICSE), pp. 353–363 (2012)

32. Mezzetti, G., Møller, A., Torp, M.T.: Type regression testing to detect breaking changes
in Node.js libraries. In: 32nd European Conference on Object-Oriented Programming
(ECOOP), pp. 7:1–7:24 (2018)

33. Mitchell, B.S., Mancoridis, S.: On the automatic modularization of software systems
using the Bunch tool. IEEE Transactions on Software Engineering 32(3), 193–208
(2006)

34. Morrison, P., Murphy-Hill, E.: Is programming knowledge related to age? an explo-
ration of Stack Overflow. In: 10th Working Conference on Mining Software Repositories
(MSR), pp. 69–72 (2013)

35. Moser, S., Nierstrasz, O.: The effect of object-oriented frameworks on developer pro-
ductivity. Computer 29(9), 45–51 (1996)

36. Mostafa, S., Rodriguez, R., Wang, X.: Experience paper: a study on behavioral back-
ward incompatibilities of Java software libraries. In: 26th International Symposium on
Software Testing and Analysis (ISSTA), pp. 215–225 (2017)

37. Murphy-Hill, E., Zimmermann, T., Bird, C., Nagappan, N.: The design space of bug
fixes and how developers navigate it. IEEE Transactions on Software Engineering 41(1),
65–81 (2015)

38. Murphy-Hill, E.R., Zimmermann, T., Bird, C., Nagappan, N.: The design of bug fixes.
In: 35th International Conference on Software Engineerin (ICSE), pp. 332–341 (2013)

39. Nguyen, H.A., Nguyen, T.T., Jr., G.W., Nguyen, A.T., Kim, M., Nguyen, T.N.: A
graph-based approach to API usage adaptation. In: 25th International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA), pp.
302–321 (2010)

40. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy consumption.
In: Working Conference on Mining Software Repositories (MSR), pp. 22–31 (2014)

41. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy consumption.
In: 11th Working Conference on Mining Software Repositories (MSR), pp. 22–31 (2014)

42. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-objective
search problem. IEEE Transactions on Software Engineering 37(2), 264–282 (2011)

43. Prete, K., Rachatasumrit, N., Sudan, N., Kim, M.: Template-based reconstruction
of complex refactorings. In: 26th International Conference on Software Maintenance
(ICSM), pp. 1–10 (2010)

44. Raemaekers, S., van Deursen, A., Visser, J.: Measuring software library stability through
historical version analysis. In: 28th International Conference on Software Maintenance
(ICSM), pp. 378–387 (2012)

45. Reddy, M.: API Design for C++. Morgan Kaufmann Publishers (2011)
46. Robbes, R., Lungu, M., Röthlisberger, D.: How do developers react to API deprecation?

the case of a Smalltalk ecosystem. In: 20th International Symposium on the Foundations
of Software Engineering (FSE), pp. 56:1–56:11 (2012)

47. Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press (2003)
48. Sawant, A.A., Robbes, R., Bacchelli, A.: On the reaction to deprecation of 25,357 clients

of 4+1 popular Java APIs. In: 32nd International Conference on Software Maintenance
and Evolution (ICSME), pp. 400–410 (2016)

49. Sawant, A.A., Robbes, R., Bacchelli, A.: On the reaction to deprecation of clients of
4+1 popular Java APIs and the JDK. Empirical Software Engineering pp. 1–40 (2017)

50. Schäfer, T., Jonas, J., Mezini, M.: Mining framework usage changes from instantiation
code. In: 30th International Conference on Software Engineering (ICSE), pp. 471–480
(2008)

51. Silva, D., Tsantalis, N., Valente, M.T.: Why we refactor? confessions of GitHub contrib-
utors. In: 24th International Symposium on the Foundations of Software Engineering
(FSE), pp. 858–870 (2016)

52. Terra, R., Valente, M.T., Czarnecki, K., Bigonha, R.S.: A recommendation system for
repairing violations detected by static architecture conformance checking. Software:
Practice and Experience 45(3), 315–342 (2015)

38 Aline Brito et al.

53. Wang, W., Malik, H., Godfrey, M.: Recommending posts concerning API issues in devel-
oper Q&A sites. In: 12th Working Conference on Mining Software Repositories (MSR),
pp. 224–234 (2015)

54. Wu, W., Gueheneuc, Y.G., Antoniol, G., Kim, M.: AURA: a hybrid approach to iden-
tify framework evolution. In: 32nd International Conference on Software Engineering
(ICSE), pp. 325–334 (2010)

55. Xavier, L., Brito, A., Hora, A., Valente, M.T.: Historical and impact analysis of API
breaking changes: A large scale study. In: 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 138–147 (2017)

56. Xavier, L., Hora, A., Valente, M.T.: Why do we break APIs? first answers from devel-
opers. In: 24th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 392–396 (2017)

57. Zhang, T., Upadhyaya, G., Reinhardt, A., Rajan, H., Kim, M.: Are code examples on
an online Q&A forum reliable? a study of API misuse on stack overflow. In: 40th
International Conference on Software Engineering (ICSE), pp. 886–896 (2018)

You Broke My Code 39

About the authors

Aline Brito is a PhD student in the Computer Science
Department at the Federal University of Minas Gerais
(UFMG), where she also received a Master’s Degree in
Computer Science. She received a Bachelor’s Degree in
Computer Engineering from the Pontifical Catholic Univer-
sity of Minas Gerais (PUC Minas). Brito also was a software
developer at Concert Technologies during five years. Her re-
search interests include software quality analysis, software
evolution, and software repository mining. Contact her at
alinebrito@dcc.ufmg.br.

Marco Tulio Valente is an associate professor in the
Computer Science Department at the Federal University
of Minas Gerais (UFMG), where he also heads the Ap-
plied Software Engineering Research Group (ASERG). His
research interests include software architecture and mod-
ularity, software maintenance and evolution, and software
quality analysis. Valente received a PhD in Computer Sci-
ence from the Federal University of Minas Gerais. He is a
Researcher I-D of the Brazilian National Research Council
(CNPq) and holds a Researcher from Minas Gerais State
scholarship, from FAPEMIG. Contact him at mtov@dcc.

ufmg.br; www.dcc.ufmg.br/~mtov.

Laerte Xavier is a PhD student in the Computer Sci-
ence Department at the Federal University of Minas Gerais
(UFMG), where he also received a Master’s Degree in
Computer Science. His research interests include software
architecture and modularity, software maintenance and
evolution, and software quality analysis. Contact him at
laertexavier@dcc.ufmg.br.

Andre Hora is a professor in the Computer Science
Department at the Federal University of Minas Gerais
(UFMG). His research interests include software evolution,
software repository mining, and empirical software engi-
neering. Hora received a PhD in Computer Science from
the University of Lille. He was a Postdoctoral researcher at
the ASERG/UFMG group during two years and a software
developer at Inria/Lille during one year. Contact him at
andrehora@dcc.ufmg.br; www.dcc.ufmg.br/~andrehora.

