
GoCity: Code City for Go
Rodrigo Brito, Aline Brito, Gleison Brito, Marco Tulio Valente

ASERG Group, Department of Computer Science (DCC), Federal University of Minas Gerais, Brazil
rodrigobrito@ufmg.br, {alinebrito, gleison.brito, mtov}@dcc.ufmg.br

Abstract—Go is a statically typed and compiled language,
which has been widely used to develop robust and popular
projects. As other systems, these projects change over time.
Developers commonly modify the source code to improve the
quality or to implement new features. In this context, they use
tools and approaches to support software maintenance tasks.
However, there is a lack of tools to support Go developers in
this process. To address these challenges, we introduce GoCity, a
web-based implementation of the CodeCity program visualization
metaphor for Go. The tool extracts source code metrics to create
a software visualization in a automated way. We also report usage
scenarios of GoCity involving three popular Go projects. Finally,
we report the feedback of 12 developers about the GoCity of
their projects.

Index Terms—Software Visualization, Software Evolution,
Mining Software Repositories

I. INTRODUCTION

Go is a statically typed and compiled programming lan-
guage created by Google in 2007, and public available since
2009.1 The language was created to supply demands of
large-scale and complex systems. Recently, it was pointed
as one of the most loved languages.2 Besides that, there are
approximately 20K Go projects hosted on GitHub. Among
these Go projects, there are popular and large software systems
like DOCKER3 (a platform to software containerization), and
KUBERNETES4 (a system to manage containers).

As other software systems, changes often occur in Go
projects to include new features, improve the source code qual-
ity, and fix bug [1], [2]. As a consequence, an important part
of a software evolution encompasses maintenance and code
understanding tasks [3]. In this context, the literature presents
several approaches and tools to help developers when evolving
software systems [4]–[8]. Specifically, these approaches focus
in important questions that often arise during software analysis
and evolution: (a) Is my project well modularized? (b) Are
there design problems in my system? (c) What are the most
complex and large elements in my project?

However, we still have a limited number of techniques and
tools to support Go developers in these tasks. To address
these problems, we propose GoCity, a web tool to visualize
Go projects as 3D cities. Our tool is based in the code city
metaphor, a popular approach to support software analysis and
evolution proposed by Wettel and Lanza [4]. GoCity analyses
projects hosted on GitHub in an automatic way, providing an

1https://golang.org/doc/faq#Origins
2https://insights.stackoverflow.com/survey/2018
3https://github.com/docker/docker
4https://github.com/kubernetes/kubernetes

on-the-fly visualization based in metrics from the source code.
For example, a struct in a Go project represents a building in
the city, and the number of methods in the struct defines the
building height. Our ultimate goal is to help Go developers in
maintenance tasks, showing relevant information about code
design and architecture.

Although it is still a research prototype tool, GoCity
was widely used and explored by Go developers. For
example, the tool had 23K unique users from different
countries on November, 2018. Besides that, the project has
around 1.3K stars on GitHub, in the same time frame. As
a complementary evaluation, we sent emails to 60 owners
of popular Go projects, asking for feedback about GoCity.
More specifically, we first created the city visualization of
these projects in our tool. Then, we sent an email with the
visualization link to the developers, asking for their insights
about code design, architecture, and maintenance tasks. We
received 12 answers, which represents a response rate of 20%.

Structure of the paper. Section II describes the city metaphor
to represent the source code. Section III shows the architecture
of GoCity. Section IV presents usage scenarios with three
real-world Go projects. Section V details the users feedback
about our tool. Section VI presents related work. Finally, we
conclude the paper in Section VII.

II. CODE CITY FOR GO

GoCity is based in CodeCity [4], [5], which is a popular
metaphor to represent software systems as cities. However,
CodeCity was initially implemented only to C++, Java, and
Smalltalk. In the original implementation, the source code
elements are represented as urban structures, and code metrics
are used to characterize them. With GoCity, we adapted the
metaphor to support Go features. For example, there are no
classes in Go, but the language includes a similar structure
named struct, which is a type that can contain attributes and
methods. Besides that, Go allows declaration of methods and
attributes outside a struct. In this way, GoCity represents a file
as a building, and the structs are sub-building positioned on
building’s top.

Figure 1 shows an overview of the proposed visualization.
Similar to CodeCity, the building’s width and height represent
the number of attributes and methods in a struct, respectively.
Buildings representing files are defined by the number of
methods and attributes declared outside a struct. The color
refers to the element category; particularly, structs are denoted
by blue color, the files are represented by gray color, and the



directories are red. In addition, the color intensity indicates
the number of lines (i.e., darker buildings are large, in terms
of lines of code).

23

1

1

2

3

Number of Attributes

Number of Methods

Number of LinesStructs

Files

Directories

Fig. 1. Code City for Go

III. ARCHITECTURE

As presented in Figure 2, the high level architecture of
GoCity includes two modules: processing and front-end.

Codebase 

Processing Module 

Position Service 

Git Service

Cache Parser Service 

Front-end Module 

Validation Service

Navigation Service

 3D Processor 

Fig. 2. GoCity Architecture

Processing Module. This module produces an instance of the
project as a city metaphor. First, in Git Service, the project
is fetched from its repository. Then, Parser Service extracts
the metadata (e.g., number of methods, fields, and lines).
The hierarchy of the city and the location of buildings are
defined by Position Service, aiming a better use of space.
This module also includes a cache service, which is based
on a Least Recently Used (LRU) algorithm. As consequence,
our tool stores temporarily the processed project, avoiding
unnecessary requests and performing a better CPU usage.

Front-end Module. This module represents the web-based
interface of GoCity. Its receives as input the URL of the
analyzed project. Validation Service reports the errors in the
data input, as well as, server errors (e.g., connection failures).
3D Processor provides the output, i.e., a visualization of
the Go source code as a 3D city, which is implemented
using Babylon.js5 and React.js.6 In addition, the interface is
interactive, e.g., Navigation Service provides features to rotate
and zoom the image.

5https://www.babylonjs.com
6https://reactjs.org

IV. USAGE EXAMPLES

In this section, we present two examples of usage of
GoCity. In the first example, we inspected a file from GO-
HUGOIO/HUGO7 (a framework to construct websites). We
locate the file on GitHub, and we also describe the code
metrics. Then, in a second example, we analyze the code
design of two popular Go projects, LABSTACK/ECHO8 and
GORILLA/MUX,9 which are used to build web applications.

A. Inspecting a Source Code File

GoCity provides an option to visualize source code metrics
of a given code element. When hovering the mouse over the
element, a window is displayed with the number of lines,
number of methods, and number of attributes of the building
structure. For example, in Figure 3, we inspect the struct Page
of GOHUGOIO/HUGO project. This struct contains 1,542 lines,
96 methods, and 62 attributes. In addition, our tool provides
a button to retrieve the code on GitHub. The functionality
is provided for directories, files and structs. Figure 4 shows
an example, when the struct Page is opened on GitHub,
highlighting the file declaration.

Fig. 3. Visualizing code metrics with GoCity

Fig. 4. Retrieving a file from GitHub

7https://github.com/gohugoio/hugo
8https://github.com/labstack/echo
9https://github.com/gorilla/mux



B. High-level Design Visualization

Figure 5 shows the code city visualization of LAB-
STACK/ECHO, a popular project to create web applications in
Go. The project has more than 12K GitHub stars and 53 source
code files. The largest gray structure represents the main
module, which contains the application core. The structures
in the bottom right corner refer to a collection of utilities and
files from router module. Finally, the tallest building in blue
(on top) represents the context system, a key component of
the project, which controls router variables, parameters, and
response values.

Fig. 5. LABSTACK/ECHO city

Figure 6 shows a second example, the city of GO-
RILLA/MUX, a popular web router for Go. The project has
14 source code files and more than 7K GitHub stars. The
city has a single district, since the project only contains one
folder. The large blue building refers to the core application,
including methods to perform router operations. The largest
buildings (gray) and the highest building (black) represent test
files. As we can see, the project groups the tests in few and
large files. For example, the black building represents a test
file with approximately 2K lines of code.

Fig. 6. GORILLA/MUX city

V. USER FEEDBACK

We also surveyed Go developers to collect their feedback
about our tool. This section details the survey design and the
survey answers.

A. Survey Design

Selection of the Go projects. First, we selected the top-100
most popular Go projects on GitHub (on November, 2018),
ordered by number of stars, a relevant metric to filter popular
repositories [9]. This list does not include projects that are
forks or organizations, as well as projects whose owners
do not have a public email. Next, we manually inspected
the projects to guarantee they are software systems. For
example, we removed AVELINO/AWESOME-GO10 because this
repository just contains a list of popular Go systems. These
filtering steps resulted in 64 projects. Then, we removed
projects maintained by the same owner. In other words, we
only selected one repository per owner to avoid sending
multiple emails to the same person. The final list consists
in 60 systems, including well-known Go projects, such as
ASTAXIE/BEEGO (a framework to Web development),11 and
JUNEGUNN/FZF12 (a fuzzy finder to command line).

Contacting the developers. We sent an email to each owner
from the 60 selected Go projects, asking for their feedback
about GoCity. Figure 7 shows the email template. In the
emails, we added a link to the code city visualization provided
by our tool. Then, we asked two questions. With the first
question, our interest is to investigate whether GoCity helps to
reveal information about the system design. With the second
question, we intend to reveal the use of GoCity on software
maintenance process. We received 12 answers, corresponding
a response ratio of 20%.

Hi [developer name],

I am a CS student at [university name], [country name]. I am
working in an implementation of the Code City metaphor for Go.

For example, [repository/project] code city is at:

[link project as 3D city]

I would like to ask you two questions about this visualization:

1. Does it provide interesting insights about [repository/project]
design or architecture? If yes, please describe.

2. How can it help on the maintenance and evolution of
[repository/project]?

Fig. 7. Mail sent to Go developers

Analyzing the answers. We use thematic analysis to interpret
the developers responses [10], which consists in a technique

10https://github.com/avelino/awesome-go
11https://github.com/astaxie/beego
12https://github.com/junegunn/fzf



to identify and record themes (i.e., patterns) in texts. The pro-
cess includes the following steps: (1) reading the developers
responses, (2) identifying preliminary codes for each response,
(3) searching for themes among the defined codes, (4) merging
similar themes, (5) defining the final themes. Steps 1 to 4 were
performed independently by two authors of this paper. Then,
the final themes were discussed and defined in a meeting. We
use labels D01 to D12 to refer to developers.

B. Survey

1) Does GoCity provide interesting insights about software
design and architecture? 11 developers answered this
question. According to 8 developers (73%), our tool is
useful to provide information about the project design
and architecture. In addition, they detailed these answers.
As presented in Figure 8, we grouped the answers in
two categories: CODE MODULARIZATION and DESIGN
PROBLEMS. We describe and give some examples of each
group in the followings paragraphs.

50%

50%

Code modularization

Design problems

0 1 2 3 4 5
Occurrences

Fig. 8. Insights provided by GoCity

Code modularization. In four answers (50%), the developers
answered that GoCity helps to provide insights about the
modules, complexity of the project, and distribution of the
source code in the files. As example, we have the following
answer:

I really find the visualization useful to understand where most
complexity is and how well decoupled things are. (D02)

Design problems. This category includes four answers (50%),
where developers report that GoCity can help to reveal
possible design or architectural problems. As example of this
category, we have the following answer:

If I see high and large blue buildings it probably means that
the struct is not respecting the single responsibility principle
or that the type do a lot of things. (D06)

2) Does GoCity help on software maintenance and evolution?
10 developers answered this question, and six developers
(60%) agreed that GoCity can help in software maintenance
activities. Figure 9 reports the summary of developers
answers. We grouped the benefits pointed in the answers in
two categories: IDENTIFYING REFACTORING CANDIDATES
and CODE COMPREHENSION. We describe and give some
examples of each category in the followings paragraphs.

Code Comprehension. In four cases (67%), the developers
said that the tool can help developers to get to a high-level
understanding of the code base, and the modules distribution

33%

67%

Identifying refactoring
candidates

Code comprehension

0 1 2 3 4 5
Occurrences

Fig. 9. How GoCity can help on the software maintenance and evolution

in the system. As example, we have:

This seems like a great tool for getting a high-level
understanding of a foreign code-base. It can probably
accelerate the on-boarding process for new contributors to a
complex project. (D02)

Identifying Refactoring Candidates. In two answers (33%),
the developers said that GoCity can help developers to
identify possible candidates to refactoring (e.g., split module,
move elements). As example, we have this answer:

Identifying unbalanced bits of the code in terms of file size
and or struct size is useful to point out areas which might
need refactoring. (D12)

C. Threats to Validity

We send emails to owners of popular Go projects, asking for
feedback about GoCity. However, we report insights provided
by our tool considering only 12 answers. Besides that, the
results cannot be generalized to other systems, since we only
send emails to owners of popular and non-organizational
projects hosted on GitHub. However, we select relevant sys-
tems among the top-100 most popular Go projects, and the
answers were analyzed by two authors of the paper.

VI. RELATED WORK

The literature presents several approaches to support devel-
opers on maintaining and evolving software systems [4], [6],
[8], [11]–[19]. Among these studies, there are techniques based
in software visualization, which reveals relevant information
about the source code [4], [6], [13]–[15], [20], [21]. Alnabhan
et. al [14] present an approach based in a 2D software
visualization. They represent the metrics from the source code
using geometric forms. For example, a rectangle represents
a class, and the number of lines defines the height of an
object. The tool also provides information about the element
relationships and method signatures. Scarsbrook et. al [8]
present MetropolJS, a tool to analyze large JavaScript projects,
based in a treemap layout.

Wettel and Lanza [4], [15] proposed a city metaphor to
represent large systems as a 3D visualization. CodeCity im-
plements the proposed technique, and it support the languages
Java, C++ and Smalltalk [4]. In another study, the authors
evaluate the relevance of the city metaphor by means of a
controlled experiment [22]. They reveal that CodeCity can
decrease the time to conclude software maintenance and
analysis tasks.



In this context, there are other tools based in the code city
metaphor. For example, Merino et. al. [23] introduce CityVR,
which uses virtual reality to represent the visualizations. In the
JavaScript ecosystem, Viana et. al [6] introduce JSCity, a tool
to visualize JavaScript projects, which is also inspired in the
code city metaphor. The authors report an experiment using
the tool to build visualizations for 40 systems.

Recently, Nunes et. al [7] implemented the city metaphor
to Swift projects. The authors adapted the city metaphor to
perform a visual representation of modular structures from
Swift. The tool includes a web interface, where users can
visualize and extract different information from the project
(e.g., lines of code and classes).

However, these tools do not include support to Go, a popular
and modern programming language to implement large and
complex systems. In this paper, we describe a new tool named
GoCity, which is also based on the code city metaphor.
We adapted the metaphor to support Go features. To our
knowledge, we are the first to survey developers, in order
to collect their feedback and opinions about the code city of
popular open source software projects.

VII. CONCLUSION

Several tools and approaches help developers to support
software analysis, evolution, and maintenance. In this context,
visualization techniques based on code cities are gaining
momentum to support developers in software maintenance
tasks. In this paper, we presented GoCity, an implementation
of the code city metaphor to visualize Go projects as cities,
which is public available at https://go-city.github.io. The tool
provides a web interface to end users to interact and visualize
the source code in 3D structures.

To evaluate the tool, we sent emails to 60 owners of popular
Go projects hosted on GitHub. We received 12 answers. By
analyzing their feedback, we show that GoCity can be used
to provide insights about design problems and modularization.
We also report that the tool can help on software maintenance
tasks, since six developers pointed that GoCity is useful to
identify refactoring candidates, and on code comprehension
tasks.

As an additional contribution, we made the source code
of GoCity publicly available on GitHub.13 Further studies can
consider other emerging ecosystems (e.g., Rust and Elixir). We
also plan to provide a new feature to visualize the software
evolution over time.

ACKNOWLEDGMENT

We thank the 12 GitHub developers who shared their feed-
back about GoCity with us. This research is supported by
FAPEMIG, CNPq, and CAPES.

REFERENCES

[1] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how Java
developers break APIs,” in 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 255–265, 2018.

13https://github.com/rodrigo-brito/gocity

[2] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and
impact analysis of API breaking changes: A large scale study,” in
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 138–147, 2017.

[3] G. Aparecido, M. Nassau, H. Mossri, H. Marques-Neto, and M. T.
Valente, “On the benefits of planning and grouping software maintenance
requests,” in 15th European Conference on Software Maintenance and
Reengineering (CSMR), pp. 55–64, 2011.

[4] R. Wettel and M. Lanza, “CodeCity: 3D visualization of large-scale
software,” in 30th International Conference on Software Engineering
(ICSE), pp. 921–922, 2008.

[5] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in 4th
International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT), pp. 92–99, 2007.

[6] M. Viana, A. Hora, and M. T. Valente, “CodeCity for (and by)
JavaScript,” CoRR, vol. abs/1705.05476, 2017.

[7] R. Nunes, M. Rebouças, F. Soares-Neto, and F. Castor, “Visualizing
Swift projects as cities,” in 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 368–370, 2017.

[8] J. D. Scarsbrook, R. K. L. Ko, B. Rogers, and D. Bainbridge,
“MetropolJS: visualizing and debugging large-scale Javascript program
structure with treemaps,” in 26th Conference on Program Comprehen-
sion (ICPC), Tool Demonstration, pp. 389–392, 2018.

[9] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of GitHub repositories,” in 32nd IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
pp. 334–344, 2016.

[10] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in 5th International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 275–284, 2011.

[11] D. Nam, Y. K. Lee, and N. Medvidovic, “EVA: A tool for visualizing
software architectural evolution,” in 40th International Conference on
Software Engineering (ICSE), Tool Demonstration, pp. 53–56, 2018.

[12] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “A large-scale study of architectural evolution in open-
source software systems,” Empirical Software Engineering, vol. 22,
no. 3, pp. 1146–1193, 2017.

[13] A. Marcus, L. Feng, and J. I. Maletic, “3D representations for software
visualization,” in 1st Symposium on Software Visualization (SoftVis),
pp. 27–ff, 2003.

[14] M. Alnabhan, A. Hammouri, M. Hammad, M. Atoum, and O. Al-
Thnebat, “2D visualization for object-oriented software systems,” in
International Conference on Intelligent Systems and Computer Vision
(ISCV), pp. 1–6, 2018.

[15] R. Wettel and M. Lanza, “Program comprehension through software
habitability,” in 15th IEEE International Conference on Program Com-
prehension (ICPC), pp. 231–240, 2007.

[16] Q. Gao, S. Ma, S. Shao, Y. Sui, G. Zhao, L. Ma, X. Ma, F. Duan,
X. Deng, S. Zhang, and X. Chen, “CoBOT: static C/C++ bug detection
in the presence of incomplete code,” in 26th Conference on Program
Comprehension (ICPC), Tool Demostration, pp. 385–388, 2018.

[17] M. Dósea, C. Sant’Anna, and B. C. da Silva, “How do design decisions
affect the distribution of software metrics?,” in 26th Conference on
Program Comprehension (ICPC), pp. 74–85, 2018.

[18] A. Shatnawi, H. Shatnawi, M. A. Saied, Z. Alshara, H. A. Sahraoui,
and A. Seriai, “Identifying software components from object-oriented
APIs based on dynamic analysis,” in 26th Conference on Program
Comprehension (ICPC), pp. 189–199, 2018.

[19] A. Hora and M. T. Valente, “apiwave: Keeping track of API popularity
and migration,” in 31st IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 321–323, 2015.

[20] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola,
“Code park: A new 3D code visualization tool,” in 5th IEEE Working
Conference on Software Visualization (VISSOFT), pp. 43–53, 2017.

[21] A.-L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen, and
H. Väätäjä, “Software visualization today: Systematic literature review,”
in 20th International Academic Mindtrek Conference, pp. 262–271,
2016.

[22] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: a
controlled experiment,” in 33rd International Conference on Software
Engineering (ICSE), pp. 551–560, 2011.

[23] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “CityVR: Gameful
software visualization,” in 33rd IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 633–637, 2017.


