
JavaScript API Deprecation in the Wild:
A First Assessment

Romulo Nascimento, Aline Brito, Andre Hora, Eduardo Figueiredo
Department of Computer Science

Federal University of Minas Gerais, Brazil
{romulonascimento, alinebrito, andrehora, figueiredo}@dcc.ufmg.br

Abstract—Building an application using third-party libraries
is a common practice in software development. As any other
software system, code libraries and their APIs evolve over
time. In order to help version migration and ensure backward
compatibility, a recommended practice during development is
to deprecate API. Although studies have been conducted to
investigate deprecation in some programming languages, such as
Java and C#, there are no detailed studies on API deprecation
in the JavaScript ecosystem. This paper provides an initial
assessment of API deprecation in JavaScript by analyzing 50
popular software projects. Initial results suggest that the use of
deprecation mechanisms in JavaScript packages is low. However,
we find five different ways that developers use to deprecate API
in the studied projects. Among these solutions, deprecation utility
(i.e., any sort of function specially written to aid deprecation) and
code comments are the most common practices in JavaScript.
Finally, we find that the rate of helpful message is high:
67% of the deprecations have replacement messages to support
developers when migrating APIs.

Index Terms—API deprecation, JavaScript, Software Library

I. INTRODUCTION

Building an application using third-party libraries is a
common practice in software development. Libraries provide
reusable functionality to client applications through their Ap-
plication Programming Interfaces (APIs). API usage brings
several advantages to a software development project [10],
such as cost and resources usage reduction. As a result, devel-
opers can focus on business core requirements and software
quality may increase by relying on libraries that have been
widely adopted, tested and documented [6].

As any other software system, libraries and their APIs
evolve over time [5]. Thus, functions and parameters might be
renamed, updated, moved, or removed. Consequently, client
applications need to migrate to the latest stable versions
of their dependencies [1]. To help version migration and
ensure backward compatibility, a recommended practice in
software development is to deprecate the API. In other words,
deprecation indicates that the use of a certain API should be
avoided because it will be changed, removed or discontinued
in a future version [7]. Some of the most popular program-
ming languages, such as Java and C#, provide native support
mechanisms and tools to help developers explicitly deprecate
their APIs [9]. Indeed, recently, there have been many research
on deprecation practices and mechanisms mostly on those
languages [1], [4], [7], [9], [13]–[16]. However, to the best

of our knowledge, there are no detailed studies regarding API
deprecation in the JavaScript ecosystem.

JavaScript has become extremely popular over the last years.
According to the Stack Overflow 2019 Developer Survey1,
JavaScript is the most popular programming language in this
platform for the seventh consecutive year. GitHub also reports
that JavaScript is the most popular language in terms of unique
contributors to both public and private repositories2. The npm
platform, the largest JavaScript package manager, states on
their latest survey3 that 99% of JavaScript developers rely on
npm to ease the management of their project dependencies.
This survey also points out the massive growth in npm usage
that started about 5 years ago. Despite the growth on the usage
of JavaScript external libraries and APIs, little is known about
JavaScript API deprecation mechanisms and practices.

Therefore, this paper aims to investigate deprecation in
JavaScript APIs. We analyze deprecation solutions in this
language by inspecting the most popular projects hosted on
npm. The following research questions are then proposed:

• RQ1. How do developers deprecate JavaScript APIs?
• RQ2. Are JavaScript APIs deprecated with replacement

messages?
Replacement messages (RQ2) are important because they

help developers to find alternative options for a deprecated
function. Our initial results suggest that the use of deprecation
mechanisms in JavaScript packages is low. However, we find
five different ways that developers use to deprecate API in the
studied projects. Among these solutions, deprecation utility
(i.e., any sort of function specially written to aid depreca-
tion) and code comments are the most common practices
in JavaScript. Finally, we observed that the rate of helpful
message is high: 67% of the deprecations have replacement
messages to support developers when migrating APIs.

II. THE JAVASCRIPT ECOSYSTEM

JavaScript (or JS, for short) is a versatile programming
language that conforms to the ECMAScript specification. It
has been primarily designed and known as a language for ren-
dering dynamic content on the client-side of Web applications.
More recently, JavaScript has also been used as a server-side
language through the use of the Node.js platform.

1https://insights.stackoverflow.com/survey/2019
2https://octoverse.github.com
3https://javascriptsurvey.com



Fig. 1. Stack Overflow answer in which the author recommends using JSDoc
annotation with a console warning message to indication deprecation.

Software reuse has become a key factor for a cost and
time efficient software development project [11]. This scenario
has led to the emergence of software repositories, such as
npm, that provide a centralized and simplified management
and distribution of software components. The npm registry
serves as a base for JavaScript Web applications, frameworks
and library ecosystems. On June 4th, 2019, npm reached
one million hosted JavaScript packages, making it the largest
software repository to date [12].

Unlike other popular programming languages, such as Java
and C#, JavaScript provides neither native deprecation mech-
anisms, nor recommendations from ECMA International or
TC39 on how to properly deprecate JavaScript written code.
Google brings only a few relevant results when we search for
“how to deprecate JavaScript”. There is an popular answer to
a Stack Overflow question, presented in Figure 1, in which
the author recommends using JSDoc4 deprecation annotation,
possibly along with a console warning message indicating the
deprecation5. In addition, Figure 2 shows a Web blog that
also endorses the use of JSDoc – with comments on the
deprecation context and time frame – and console warnings.
The same blog also suggests that a deprecation utility, such as
a helper function, might be suitable6. These recommendations
are among the top results provided by a Google search.
However, from our ad hoc searches, we observed that there
is no standard way for API deprecation in JavaScript.

III. STUDY DESIGN

This section describes the methodological steps we followed
to answer the research questions presented in Section I. We
first present the dataset of projects we used and the search
strategies to find API deprecation in the target projects.

A. Selecting Projects

We selected the top-50 most depended upon projects ac-
cording to the npm registry7 to compose our dataset. npm

4https://jsdoc.app/
5https://stackoverflow.com/questions/19412660/how-should-i-mark-a-

method-as-obsolete-in-js
6https://css-tricks.com/approaches-to-deprecating-code-in-javascript/
7https://www.npmjs.com/browse/depended

Fig. 2. Web development blog article suggesting the use of JSDoc, comments
on the deprecation context and time frame, and console warnings.

Fig. 3. GitHub projects statistics and npm dependents

is a well known package manager for JavaScript applications,
which is a public collection of open-source JavaScript projects.
Therefore, the npm registry website is an indicator of project
popularity and their amount of client applications. To identify
the characteristics of these JavaScript projects, we also col-
lected metrics from their GitHub repositories. Table I presents
all selected projects by showing their names and used versions.
As shown in this table, our dataset includes some popular
JavaScript projects, such as AngularJS, JQuery, and React.

Figure 3 shows some statistics about these projects based
on GitHub and npm data retrieved in November, 2019. In
particular, Figure 3 presents boxplots with the number of
stars, forks, contributors, commits, and dependent clients. We
collected the first four metrics from GitHub, while the last one
was obtained from npn. As can be observed in this figure, the
selected projects are not only highly popular (e.g., median of
10K stars), but also forked a lot. They are also active and with
thousands of dependent clients. In fact, according to npm, all
selected projects have more than 10K dependents.

B. Searching for Deprecation Occurrences

We downloaded the source code of the 50 selected projects,
considering their latest stable version on November 20th,
2019. We then used a regular expression based search to find



TABLE I
50 MOST DEPENDED UPON PACKAGES ON NPM REGISTRY

Project Name Version Project Name Version
1 angular 8.2.10 26 moment 2.24.0
2 async 3.1.0 27 node-fetch 2.6.0
3 aws-sdk-js 2.550.0 28 node-fs-extra 2.1.2
4 axios 0.19.0 29 node-glob 7.1.4
5 babel 7.6.4 30 node-mkdirp 0.5.1
6 babel-loader 8.0.6 31 node-semver 6.3.0
7 bluebird 3.7.1 32 node-uuid 3.3.3
8 body-parser 1.19.0 33 prop-types 15.7.2
9 chalk 2.4.2 34 q 2.0.2
10 cheerio 0.21.0 35 react 16.10.2
11 classnames 2.2.6 36 react-redux 7.1.1
12 colors.js 1.4.0 37 redux 4.0.4
13 commander.js 4.0.0-1 38 request 2.88.1
14 core-js 3.3.2 39 rimraf 3.0.0
15 css-loader 3.2.0 40 rxjs 6.5.3
16 debug 4.1.1 41 shelljs 0.8.3
17 dotenv 8.1.0 42 style-loader 1.0.0
18 eslint 6.5.1 43 through2 3.0.1
19 express 4.17.1 44 tslib 1.6.0
20 generator 4.1.0 45 TypeScript 3.6.4
21 Inquirer.js 6.0.0 46 underscore 1.9.1
22 jquery 3.4.1 47 vue 2.6.10
23 js-yaml 3.13.1 48 webpack 4.41.2
24 lodash 4.17.15 49 winston 3.2.1
25 minimist 1.2.0 50 yargs 14.2.0

deprecation occurrence candidates. The regular expression we
used on the search was ‘(@)deprecate(d)’ since that covers any
occurrences of ‘deprecate’, ‘deprecated’, and ‘@deprecated’.
This last case is relative to the JSDoc annotation. We also tried
other terms, such as ‘obsolete’ and ‘replacement’, but they
returned very few relevat results. Next, we developed a tool to
navigate through JavaScript files within all projects and find
any occurrences of the deprecation regular expression on their
source code. It is important to mention that we only consider
main source code files, excluding test, minified, and non JS
files (e.g., CSS and HTML). Every time one or more matches
were found on a file, the file path and the code snippet were
saved for further investigation.

C. Data Analysis

To support our analysis and the identification of API
deprecation candidates in all 50 projects, we also used a
JavaScript code parsing library, Flow8, to find the context in
which the API deprecation terms occur. We then exported the
generated abstract syntax trees (ASTs) to manually analyze the
deprecation occurrences. The abstract syntax trees previously
obtained from the parser tool and the respective code snippets
were used as input for a manual analysis. To find out how the
deprecation terms were used, we sampled 20% of the depre-
cation occurrences. Finally, in the last step of our analysis, we
categorize each API deprecation candidate.

Table II shows the five possible JavaScript deprecation cases
we found in our analysis. We empirically derived this cases by
manually and carefully analysing the samples of code snippets.
If a certain occurrence does not fall in one of the proposed

8https://flow.org/

TABLE II
JAVASCRIPT DEPRECATION MECHANISMS.

JS Deprecation Mechanism Description
JSDoc Use of the @deprecation

JSDoc annotation
Code comment Use of code comments

excluding occurrences of JSDoc
Deprecation utility Any sort of code function specially

written to aid code deprecation at any
complexity level

console.* Use of the JavaScript engine native
console API

Deprecation lists List of deprecated elements
Others Other adopted solutions

JavaScript deprecation mechanisms, we classify it the Others
category. This analysis was performed by the first author of
the paper and discussed with co-authors until consensus was
achieved. We also paid special attention to verify whether
the deprecation occurrences included replacement messages
to help answering RQ2.

IV. RESULTS

We found deprecation occurrences in 29 (58%) out of the
50 projects. At the file level, from 7,038 JavaScript parsed
files, we detected deprecation occurrences in 214 ( 3%). The
parsing tool extracted 1,279 deprecation contexts from the 214
files analyzed. From those, we selected a random sample of
268 cases (20%) for manual analysis.

We observed that the aws-sdk-js project alone represented
about 25% of all found occurrences and that it could bias
the results. To better understand the impact of this project on
results, we compared results with and without the aws-sdk-js
project. We concluded that the difference between the results
considering the aws-sdk-js project and not considering it is not
statistically significant.

As presented in Figure 4, the most frequent deprecation
mechanism is deprecation utility. Deprecation utility is any
sort of code function specially written to aid code deprecation.
This case represented 88 (32.8%, ±5.6% for a 95% confidence
level) out of 268. From those 88 occurrences, we detect that 75
contain replacement messages to support API migration. By
analyzing the implementation of those deprecation utilities, we
detect that 77 adopt local solutions to deprecate APIs, while
11 rely on third-party libraries. For example, a popular third-
party often adopted to deprecate APIs in JavaScript is depd9.
Interestingly, from the 77 local solutions, we observed that
64 throw warning messages to the console, 12 throw console
errors, and 1 uses console traces to flag deprecation.

Deprecation indicated by code comments represent 27
(10.1%, ±3.6% for a 95% confidence level) of the cases. This
represents the usage of code comments excluding occurrences
of JSDoc. Only 4 of those code comments contain replacement
messages. Additionally, 20 out of the 27 comments refer to
the deprecation of API elements within the project, while 7
refer to the usage of deprecated external dependencies.

9https://www.npmjs.com/package/depd



Fig. 4. Deprecation mechanism occurrences per category.

The adoption of the @deprecated JSDoc annotation was
identified 22 times (8.2%, ±3.3% for a 95% confidence level).
However, only 10 of those occurrences have replacement mes-
sages. Deprecation elements described trough lists represent
6.7% (±3% for a 95% confidence level) of the analyzed sample
(18 occurrences); 13 of those have replacement messages. The
direct usage of console.* is the least present: 11 occurrences
(4.1%, ±2.4% for a 95% confidence level), from which 10
have clear replacement messages to aid developers.

Finally, out of 268 cases, 75 could not be categorized and
need further investigation. Additionally, 27 do not indicate
deprecation and, thus, they are considered false positives.

V. DISCUSSION

We shortly discuss our results in the light of the proposed
research questions.

A. RQ1. How Do Developers Deprecate JavaScript APIs?

Overall, the analyzed sample suggests that deprecation
adoption in not frequent in JavaScript APIs. In this study,
only 3% of all analyzed files contain occurrences of depreca-
tion. Moreover, JavaScript projects deprecate their API using
deprecation utilities, often throwing console warnings. This
mechanism represented 32.8% of the studied sample. Using
comments is also a common practice: considering both JSDoc
and general code comments together, they represent 18.3%.

Despite recommendations on the Web for the use of JSDoc
deprecation annotations as being a good practice, only 22 oc-
currences (8.2%) of JSDoc have been found in this study. This
result suggests that, in practice, JSDoc might not be commonly
used for deprecation purposes. We can note, however, that
JavaScript developers in general prefer deprecation warnings
over deprecation code comments mechanisms. We believe this
is due to the fact that developers might be more prompt to
notice console messages than code comments on dependent
API. This hypothesis can be validated on a future work that
evaluates the motivations behind the choice of a deprecation
mechanism over another.

B. RQ2. Are JavaScript APIs Deprecated with Replacement
Messages?

From the categorized deprecation occurrences, we find that
about 67% have replacement messages to aid developers when
migrating APIs. However, those replacement messages are
more common when the message is output to a console.
Replacement messages in code comments have a lower oc-
currence rate.

To summarize, we can learn that there is no standard
approach to deprecate JavaScript API, nor there is a single
mechanism that is primarily used. Instead, we observe a few
different approaches that are used alone or combined. This
work can be further extended to evaluate each observed mech-
anism from developers perspectives in order to understand the
reasoning behind the choice of an API deprecation approach.
That can also lead to the proposal of a set of guidelines
on JavaScript API deprecation best practices that help and
improve the development experience.

VI. THREATS TO VALIDITY

The used JavaScript parsing tool implementation might have
errors that have been missed during its development. However,
since it was implemented based on Flow, a well known and
highly adopted parser in JavaScript community, the risk of this
thread is reduced.

To identify deprecation occurrences, we only used one
deprecation keyword: deprecated. Although this choice was
deliberate in order to focus our research on the most used word
for depreciation, this might cause us to miss other deprecation
cases where that keyword was not used. Additionally, the
categorization of the deprecation mechanism is subjected to
the author/interpreter bias, although other members of our
group verified the categories.

We focused on the analysis of 50 JavaScript open-source
projects. These systems are hosted in GitHub and npm, the
most popular code repository and JavaScript package manager.
Despite these observations, our findings cannot be directly
generalized to other systems, specifically to systems imple-
mented in other programming languages or commercial ones.
Additionally, we focused on analyzing open-source projects
that have a large number of dependent clients, as we expect
them to be good examples of well maintained and documented
projects. Those projects are considered representative case
studies since we look at open-source projects that have many
dependent clients. However, they may not represent the whole
population of JavaScript projects. Future replications should
address these issues.

VII. RELATED WORK

Sawant et al. [8], [9], [14]–[16] conducted several studies
to investigate Java API deprecation practices. The authors
assessed the impacts, the needs, the reasons, and the patterns
of API deprecation. They observed that the Java deprecation
mechanism does not address all developers needs when it
comes to deprecation [14]. The authors also detected that
Javadoc is not sufficient to understand the reasons behind



deprecation occurrences; by mining other data sources such
as source code, issue tracker data and commit history, they
identified 12 reasons that trigger developers to deprecate API
[15]. They verified that most API client applications do not
react to deprecation. Thus, they applied a survey to gather
qualitative data from developers and try to explain this behav-
ior [16]. Robbes at al. studied deprecation in the context of the
Smalltalk ecosystem [7]. Brito et al. [4] [3] investigated the use
of deprecation messages in Java and C#. The authors describe
that 66.7% and 77.8% of Java and C# API, respectively, are
deprecated with deprecation messages and that this rate does
not evolve over time. Li Li et al. [13] performed an exploratory
study on Android API deprecation and identified that the
Android framework is regularly cleaned-up from deprecated
API and their maintainers ensure that deprecated API are
commented to provide replacement messages. However, those
APIs are not consistently annotated and documented and the
existing documentation is not frequently updated. Many other
researchers study how API evolve, measure breaking changes,
and analyze their impact on client systems [2] [17]. We notice
that none of these cover the JavaScript ecosystem.

VIII. CONCLUSION

This paper presented an initial empirical study regarding
deprecation in the JavaScript ecosystem. This work can help
developers to better understand JavaScript API deprecation
approaches and offer guidance on which mechanisms are
more appropriate to a certain project context. After manually
investigating the deprecation practices of 50 popular JavaScript
projects, our results suggest that the use of deprecation mech-
anisms in JavaScript packages is low. However, we detect
five different ways that developers use to deprecate APIs:
deprecation utility, code comment, JSDoc, deprecation lists,
and console messages. Among these solutions, deprecation
utility and code comments are the most common practices.
Finally, we find that the rate of helpful message is high.
In this case, we detected that 67% of the deprecations have
replacement messages to help API migration.

As future work, we plan to extend this research as follows:
• Providing further insights on the reasons, motivations and

impressions behind the usage of JavaScript deprecation
practices and which factors have an impact on the choice
of a particular deprecation mechanism. We plan to per-
form a survey to gather qualitative data from JavaScript
developers. That can also lead to the proposal of a set of
guidelines on JavaScript API deprecation best practices
that help and improve developers experience.

• The manual analyses and categorization performed on
the deprecation occurrences could be improved to create
a tool that is able to automatically identify deprecation
contexts, categorize them, alert about missing replace-
ment messages, and suggest more appropriate deprecation

approaches. We plan to implement this tool and make it
available for developers.

ACKNOWLEDGMENTS

This research was partially supported by Brazilian funding
agencies: CNPq, CAPES, and FAPEMIG.

REFERENCES

[1] Bogart, C., Kästner, C., Herbsleb, J., and Thung, F., “How to break
an API: cost negotiation and community values in three software
ecosystems”, in International Symposium on Foundations of Software
Engineering (FSE), pp. 109–120, 2016.

[2] Brito, A., Valente, M. T., Xavier, L., and Hora, A., “You Broke My
Code: Understanding the Motivations for Breaking Changes in APIs”,
Empirical Software Engineering, pp. 1–35, 2019.

[3] Brito, G,. Hora, A., Valente, M. T., and Robbes, R., “Do Developers
Deprecate APIs with Replacement Messages? A Large-scale Analysis
on Java Systems”, in International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 360–369, 2016.

[4] Brito, G., Hora, A., Valente, M. T., and Robbes, R., “On the Use
of Replacement Messages in API Deprecation: An Empirical Study”,
Journal of Systems and Software, vol. 137, 306–321, 2018.

[5] Granli, W., Burchell, J., Hammouda, I., and Knauss, E., “The Driving
Forces of API Evolution”, in International Workshop on Principles of
Software Evolution (IWPSE), 2017.

[6] Moser, S. and Nierstrasz, O., “The effect of object-oriented frameworks
on developer productivity”, Computer, vol. 29, no. 9, 1996.

[7] Robbes, R., Lungu, M., and Röthlisberger, D., “How do developers react
to API deprecation?: the case of a Smalltalk ecosystem”, in International
Symposium on Foundations of Software Engineering (FSE), 2012.

[8] Sawant, A. A., Robbes, R., and Bacchelli, A., “On the Reaction to Dep-
recation of 25,357 Clients of 4+1 Popular Java APIs”, in International
Conference on Software Maintenance and Evolution (ICSME), pp. 400–
410, 2016.

[9] Sawant, A. A., Robbes, R., and Bacchelli, A., “On the reaction to
deprecation of clients of 4 + 1 popular Java APIs and the JDK”,
Empirical Software Engineering, vol. 23, 2158–2197, 2018.

[10] Tourwé, T. and Mens, T., “Automated support for framework-based
software”, in International Conference on Software Maintenance, pp.
148–157, 2003.

[11] Uddin, G., Dagenais, B., and Robillard, M. P., “Analyzing temporal
API usage patterns”, in International Conference on Automated Software
Engineering (ASE), 456–459, 2011.

[12] npm passes the 1 millionth package milestone! What can we learn?,
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-
what-can-we-learn. Last access: Nov, 2019.

[13] Li, L., Gao, J., Bissyandé, T. F., Ma, L., Xia, X. and Klein, J.,
“Characterising deprecated Android APIs”, in International Conference
on Mining Software Repositories (MSR), 254–264, 2018.

[14] Sawant, A. A., Aniche, M., van Deursen, A. and Bacchelli, A., “Under-
standing Developers’ Needs on Deprecation as a Language Feature”, in
International Conference on Software Engineering (ICSE), pp. 561–571,
2018.

[15] Sawant, A. A., Huang, G., Vilen, G., Stojkovski, S., and Bacchelli, A.,
“Why are Features Deprecated? An Investigation into the Motivation
Behind Deprecation”, in International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 13–24, 2018.

[16] Sawant, A. A., Robbes, R., and Bacchelli, A., “To react, or not to
react: Patterns of reaction to API deprecation”, Empirical Software
Engineering, vol. 24, pp. 3824–3870, 2019.

[17] Xavier, L., Brito, A., Hora, A., and Valente, M. T., “Historical and
Impact Analysis of API Breaking Changes: A Large Scale Study”, in
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 138–147, 2017.


