
Refactoring Graphs:
Assessing Refactoring over Time

Aline Brito, Andre Hora, Marco Tulio Valente
ASERG Group, Department of Computer Science (DCC), Federal University of Minas Gerais, Brazil

{alinebrito, andrehora, mtov}@dcc.ufmg.br

Abstract—Refactoring is an essential activity during software
evolution. Frequently, practitioners rely on such transformations
to improve source code maintainability and quality. As a con-
sequence, this process may produce new source code entities or
change the structure of existing ones. Sometimes, the transforma-
tions are atomic, i.e., performed in a single commit. In other cases,
they generate sequences of modifications performed over time. To
study and reason about refactorings over time, in this paper, we
propose a novel concept called refactoring graphs and provide an
algorithm to build such graphs. Then, we investigate the history
of 10 popular open-source Java-based projects. After eliminating
trivial graphs, we characterize a large sample of 1,150 refactoring
graphs, providing quantitative data on their size, commits,
age, refactoring composition, and developers. We conclude by
discussing applications and implications of refactoring graphs,
for example, to improve code comprehension, detect refactoring
patterns, and support software evolution studies.

Index Terms—Refactoring, Refactoring graphs, Mining soft-
ware repositories, Software evolution.

I. INTRODUCTION

Refactoring is a key activity to preserve and evolve the
internal design of software systems. Due to the importance
of the practice in modern software development, there is a
large body of papers and studies about refactoring, shedding
light on aspects such as usage of refactoring engines [1], [2],
documentation of refactorings using commit messages [1],
motivations for performing refactorings [3]–[5], benefits and
challenges of refactoring [6], [7], among many others.

However, time seems to be an underinvestigated dimension
in refactoring studies. The notable exception are studies on
refactoring tactics, particularly on repeated refactoring opera-
tions, often called batch refactorings. For example, Murphy-
Hill et al. [1] define batch refactorings as operations that
execute within 60 seconds of each another. They report
that 40% of refactorings performed using a refactoring tool
occur in batches, i.e., programmers repeat refactorings. But
the authors also mention that “the main limitation of [our]
analysis is that, while we wished to measure how often several
related refactorings are performed in sequence, we instead
used a 60-second heuristic”. Bibiano et al. [8] investigate
the characteristics and impact of batch refactorings on code
elements affected by smells. The authors rely on a heuristic to
retrieve batches [9], which groups refactorings performed by
the same author in a single code element. Thus, their heuristic
focus on single methods or classes, most of the cases resulting
in batches with a single commit (93%).

Interestingly, in his seminal book on refactoring [10],
Fowler dedicates a chapter—co-authored with Kent Beck—
to big refactorings. They claim that when studied individually
refactorings do not provide a whole picture of the “game”
played by developers when improving software design, i.e.,
“refactorings take time [to be concluded]”. However, to our
knowledge, refactorings performed over long time windows
are not deeply studied by the literature.

Therefore, we propose and evaluate a novel concept, called
refactoring graphs, to study and reason about refactoring
activities over time. In such graphs, the nodes are methods
and the edges represent refactoring operations. For example,
suppose that a method foo() is renamed to bar(). This
operation is represented by two nodes, foo() and bar(), and
one edge connecting them. After this first refactoring, suppose
that a method qux() is extracted from bar(). As a result, an
edge connecting bar() to a new node, representing qux(), is
also added to the graph. Furthermore, refactoring graphs do not
impose time constraints between the represented refactoring
operations. In our example, the extract operation, for instance,
can be performed months after the rename. Finally, refactoring
graphs may also express refactorings performed by different
developers. In our example, the rename can be performed by
d1 and the extract by another developer d2.

We formalize an algorithm to build refactoring graphs and
use it to to extract graphs for 10 well-known and popular
open-source Java-based projects. Our goal is to characterize
refactoring subgraphs to better understand this scenario. Thus,
after removing refactoring graphs coming from a single com-
mit (since our goal is to investigate refactorings over time), we
answer five research questions about the following properties:

• Size (RQ1): most refactoring graphs have at most four
nodes (85%) and three edges (83%). However, we also
found graphs with 57 nodes and 61 edges.

• Commits (RQ2): Most refactoring subgraphs are gener-
ated from two or three commits (95%).

• Age (RQ3): The age of the refactoring subgraphs ranges
from a few days to weeks or even months. For instance,
67% of the subgraphs have more than one month.

• Refactoring composition (RQ4): Most refactoring sub-
graphs include more than one refactoring type (72%).

• Developers (RQ5): Most refactoring subgraphs are cre-
ated by a single developer (60%). However, a relevant
amount (40%) is created by multiple developers.



package util;
class Foo{

m1(){…}
}

EX
TR
AC
T

EXTRACT

EXTRACT

package util;
class Foo{

x(){…}
}

package util;
class Foo{

y(){…}
}

package util;
class Foo{

z(){…}
}

Fig. 1. Refactoring subgraph produced by only one developer

Our main contributions are threefold. First, we propose
and formalize the notion of refactoring graphs, which can be
used to study and reason about refactorings performed over
any time window by multiple developers. Second, we reveal
several properties of a large sample of 1,150 refactoring
graphs extracted for 10 real software projects. Third, we
discuss several applications and implications of refactoring
graphs to expand current refactoring tools, improve code
comprehension, detect refactoring patterns, and support
software evolution studies.

Structure: Section II defines our concept of refactoring graphs.
Section III describes the design of our study, while Section IV
shows the results. Section V shows an example of a large
refactoring subgraph. We discuss the key applications and
implications in Section VI. Section VII states threats to validity
and Section VIII presents related work. Finally, we conclude
the paper in Section IX.

II. REFACTORING GRAPHS

A refactoring graph G is a set of disconnected subgraphs
G� = (V �, E�). Each G� is called a refactoring subgraph, with
a set of vertices V � and a set of directed edges E�. In this way,
the history of a software system includes a set of refactoring
subgraphs. In refactoring (sub)-graphs, the vertices are the full
signature of methods. For instance, we labeled a method m()
in class Foo and package util as util.Foo#m(). Finally, the
edge indicates the refactoring type (e.g., move method) and it
also includes meta-data about the operation (e.g., author name
and date).

Figure 1 shows an example of a refactoring graph. A devel-
oper extracted three methods from m1(), which are named x(),
y(), and z(). The edges refer to the refactoring operation. It is
worth noting that a refactoring graph can include refactorings
performed by multiple developers. For instance, Figure 2
illustrates a second example, where a developer D1 extracted
two methods from m2(), which are named a() and b(). Then,
a second developer D2 renamed b() to c(). After that, a code
reviewer might have suggested to keep the original name.
Thus, the developer undoes the latest refactoring, renaming

Developer D1

package util;
class Foo{

m2(){…}
}

EXTRA
CT

EXTRACT

package util;
class Foo{

a(){…}
}

package util;
class Foo{

b(){…}
}

package util;
class Foo{

c(){…}
}

RE
NA
ME

RE
NA
ME

Developer D2

Fig. 2. Refactoring subgraph over time

c() to b() again. In this case, the graph contains refactorings
performed by two authors. Besides, there is a cycle when the
developer reverts the method to the original name.

As presented in Figure 3, we center our study on eight
refactorings at the method level. Rename and move are the
most trivial operations since they involve just changing the
method’s signature. Inheritance-based refactorings comprise
the movement of one or more methods to supertypes or
subtypes (i.e., pull up and push down). For example, a pull
up moves methods from subclasses to a superclass. Extract
operations generate new methods in the same class (i.e., they
create a new node in our subgraphs). It is possible to extract
a method m() or multiple methods mi from a single method
m1(). However, as also illustrated in Figure 3, it is possible
to extract m() from multiple methods mi. In this case, the
extracted code is duplicated in each method mi. Inline method
is a dual operation, involving the removal of trivial elements
and replacement of the respective calls by their content. As in
the case of extract, we can inline a method m() in multiple
methods mi. Finally, we consider a refactoring called extract
and move that extracts a method to a distinct class.

III. STUDY DESIGN

A. Selecting Java Projects

We analyze the characteristics and frequency of refactoring
subgraphs in popular software systems. We select 10 popular
Java projects in terms of stars on GitHub, since stars is
a key metric to reveal the popularity of repositories [11],
[12]. We also confine our analysis to projects with more
than 1K commits and more than 100 Java files to avoid
young and small systems. Table I describes the selected
projects, including basic information, such as number
of stars, commits, files, contributors, latest version, and



TABLE I
SELECTED JAVA PROJECTS

Project Stars Forks Commits Contributors Java Files Latest Version Description

Elasticsearch 44,489 14,930 48,313 1,273 11,770 7.3.2 Search engine for cloud systems
RxJava 40,622 6,825 5,581 237 1,666 3.0.0-RC3 Library for asynchronous communications
Square Okhttp 34,484 7,521 4,273 189 167 4.2.0 HTTP client
Square Retrofit 33,801 6,254 1,756 129 241 2.6.2 HTTP client
Spring Framework 32,582 21,226 19,752 396 7,203 5.2.0 Framework for web aplications
Apache Dubbo 29,353 19,256 3,639 249 1,743 2.7.3 RPC framework
MPAndroidChart 28,647 7,424 2,018 66 220 3.1.0 Library to create charts
Glide 27,289 5,025 2,416 102 647 4.10.0 Library to load imagens
Lottie Android 26,952 4,278 1,139 76 198 3.0.7 Library to parser animations
Facebook Fresco 15,870 3,595 2,158 170 985 2.0.0 Library to display images

SubgraphRefactoring

RENAME util.Foo#m1() util.Foo#m2()

MOVE util.Foo#m1() util.Bar#m1()

MOVE AND 
RENAME

util.Foo#m1() util.Bar#m2()

PULL UP

util.SubFooi#m1()

util.SubFoo1#m1()

util.SubFoo2#m1() util.SuperFoo#m1()

PUSH DOWN

util.SubFooi#m1()

util.SubFoo1#m1()

util.SubFoo2#m1()util.SuperFoo#m1()

EXTRACT

util.Foo#mi()

util.Foo#m1()

util.Foo#m2() util.Foo#m()

INLINE

util.Bari#m3()

util.Bar1#m1()

util.Bar2#m2()
util.Foo#m()

EXTRACT 
AND MOVE

util.Fooi#mi()

util.Foo1#m1()

util.Foo2#m2() util.Bar#m()

Fig. 3. Example of refactoring subgraphs

description. These projects cover distinct domains, including
web development systems and media processing libraries, for
example. The most popular project is Elasticsearch (44,489
stars). The number of forks ranges from 3,595 (Facebook
Fresco) to 21,226 (Spring Framework). The number of
commits ranges from 1,139 (Lottie Android) to 48,313
(Elasticsearch), while the number of contributors varies from
66 (MPAndroidChart) to 1,273 (Elasticsearch). Square Okhttp
is the smallest system (167 files); and Elasticsearch is the
largest one (11,770 files).

B. Detecting Refactoring Operations

We use REFDIFF [13] to detect the refactoring operations
needed to build refactoring graphs. REFDIFF identifies refac-
torings between two versions of a git-based project. In our
study, we focus on well-known refactoring operations detected
by REFDIFF at the method level (i.e., rename, move, extract,
inline, pull up, and push down, as presented in Figure 3).

REFDIFF works by comparing each commit with its pre-
vious version in history. To avoid analyzing commits from
temporary branches, we focus on the main branch evolution.
Particularly, we use the command git log –first-parent to get
the list of commits of each project.1 Additionally, we remove
refactorings in packages with the keywords test(s), example(s),
and sample(s), since they are not part of the core system.

C. Building Refactoring Graphs

As mentioned earlier, we identify refactoring subgraphs
over time in 10 systems. Algorithm 1 presents the steps
to build refactoring graphs. The input comprises a list of
refactorings, e.g., util.Foo#m() moved to util.Bar#m().
First, the algorithm identifies each refactoring t and the two
methods involved, m1 and m2 (line 3). Then, it creates a
directed edge representing this refactoring (line 5). Since V
and E are sets, each element is represented only one time.
The edges are labeled with refactoring’s name t. The output
includes sets of refactoring subgraphs in text format.

Table II presents the frequency of refactoring subgraphs in
the analyzed systems. Considering all the projects, we detect
a total of 8,926 refactoring subgraphs. Spring Framework

1https://git-scm.com/docs/git-log#Documentation/git-log.txt---first-parent



Algorithm 1: Building refactoring graphs
Input: R (list of refactorings from a system S)
Output: DG (refactoring graph)

1 begin
2 DG ← ∅, V ← ∅, E ← ∅
3 for (m1, m2, t) ∈ R do
4 V ← V ∪ {m1,m2}
5 E ← E ∪ (m1,m2, t)
6 end
7 return (V, E)
8 end

has the highest number of subgraphs (3,104), while Square
Retrofit has the lowest amount (169). Overall, 87.1% of the
refactoring subgraphs comprise a set of operations performed
in a single commit. This ratio varies from 69.2% (Glide) to
93.8% (Apache Dubbo). In contrast, 12.9% capture refactor-
ings performed in two or more commits. In this paper, we
assess the 1,150 refactoring subgraphs with number of
commits ≥ 2, because they are the ones that represent
refactoring over time.

TABLE II
FREQUENCY OF REFACTORING SUBGRAPHS

Project Refactoring Subgraphs
All len = 1 % len ≥ 2 %

Elasticsearch 2,073 1,934 93.3 139 6.7
RxJava 1,073 975 90.9 98 9.1
Square Okhttp 635 548 86.3 87 13.7
Square Retrofit 169 135 79.9 34 20.1
Spring Framework 3,104 2,604 83.9 500 16.1
Apache Dubbo 483 453 93.8 30 6.2
MPAndroidChart 454 381 83.9 73 16.1
Glide 425 294 69.2 131 30.8
Lottie Android 196 173 88.3 23 11.7
Facebook Fresco 314 279 88.9 35 11.1

Total 8,926 7,776 87.1 1,150 12.9

IV. RESULTS

A. (RQ1) What Is the Size of Refactoring Subgraphs?

As presented in Figure 4, most refactoring subgraphs have
three vertices (639 occurrences, 56%). The other recurrent
cases comprise subgraphs with two (15%) or four vertices
(14%). Square Okhttp holds the largest subgraph regarding
the number of vertices (57), which are most related to inline
operations. Concerning the number of edges, most subgraphs
have two (67%) or three edges (16%), as shown in Figure 5.
MPAndroidChart has the largest subgraph in term of edges. It
has 61 edges, most representing extract and move operations.
Therefore, most subgraphs contain few methods (vertices) and
refactoring operations (edges).

Figure 6 shows a real example of a refactoring subgraph
from MPAndroidChart, which includes three distinct
refactoring operations. In the first commit C1, a developer
renamed method drawY Legend() to drawY Labels().2 In

2https://github.com/PhilJay/MPAndroidChart/commit/13104b26

the subsequent operation performed 13 days later, the same
developer extracted a new method from drawY Labels()
at commit C2.3 Two days after the second operation, in
commit C3, he made new extractions from drawY Labels()
to another class, creating a subgraph with five vertices and
four edges.4

11%

6%

14%

56%

15%

6+

5

4

3

2

0 100 200 300 400 500 600 700
Occurrences

V
er
ti
ce
s

Fig. 4. Number of vertices by refactoring subgraph

11%

6%

16%

67%

5+

4

3

2

0 100 200 300 400 500 600 700 800
Occurrences

E
dg
es

Fig. 5. Number of edges by refactoring subgraph

RENAME

Commit	C1 Commit	C2 Commit	C3

EXTRACT

EX
TR
AC
T

AN
D	M

OV
E

EXTRACT
AND	MOVE

Fig. 6. Example of a refactoring subgraph from MPAndroidChart

Summary: Most refactoring subgraphs are small. Among
1,150 samples, most cases comprise subgraphs with the
number of vertices ranging from two to four (85%) and the
number of edges varying between two and three (83%).

B. (RQ2) How Many Commits Are in Refactoring Subgraphs?

In this second question, we investigate the number of
commits per subgraph. As presented in Figure 7, most cases
include subgraphs with two (81%) or three commits (14%).
The largest subgraph in terms of commits is again from Square
Okhttp (18 commits).

3https://github.com/PhilJay/MPAndroidChart/commit/063c4bb0
4https://github.com/PhilJay/MPAndroidChart/commit/d930ac23



2%

3%

14%

81%

5+

4

3

2

0 100 200 300 400 500 600 700 800 900 1000

Occurrences

C
om
m
it
s

Fig. 7. Number of commits by refactoring subgraph

Figure 8 shows an example from Elasticsearh. In com-
mit C1, a developer moved two methods from class
SocketSelector to NioSelector.5 After approximately three
months, in commit C2, a second developer extracted du-
plicated code from three methods to a new method named
handleTask(Runnable).6 Among the source methods, two
methods are the ones moved early. As a consequence, these
two commits create a refactoring subgraph with six vertices
and five edges.

MOVE

MOVE
EXTRACT

EX
TR
AC
T

EXTRACT

Commit	C1 Commit	C2

Fig. 8. Example of a refactoring subgraph from Elasticsearch

Summary: Most refactoring subgraphs are created in two
commits (81%) or in three commits (14%).

C. (RQ3) What Is the Age of Refactoring Subgraphs?

To assess age, we compute the number of days between the
most recent and the oldest commit in a refactoring subgraph.
Figure 9 presents the results: we notice that refactoring sub-
graphs age varies among the projects. Considering the median
of the distributions, the youngest subgraphs are found in Lottie
Android and RxJava, which have 3 and 3.4 days, respectively.
On the other side, the oldest subgraphs are found in Glide
(489.8 days), Spring Framework (127.9), and Fresco (192).
The other systems have subgraphs with age between 76.7
(Retrofit) and 102.5 days (Dubbo). Regarding the maturity of
the target systems, the youngest project is Lottie Android (3
years) while the oldest one is Elasticsearch (9 years). We
run the Spearman’s test to assess the correlation between
the systems age and the median time of their refactoring
subgraphs. The correlation coefficient (rho) is 0.067, showing
a very weak correlation. In other words, there are subgraphs

5https://github.com/elastic/elasticsearch/commit/9ee492a3f07
6https://github.com/elastic/elasticsearch/commit/11fe52ad767

with different age in both old and young systems. However,
the p-value is > 0.001 due to our small sample size.

91.2

3.4

83.4 76.7 127.9

1
3

30

600

Elasticsearch RxJava Okhttp Retrofit Spring

D
ay

s 
(lo

g)

102.5 84
489.8

3

192

1
3

30

600

Dubbo MPAndroidChart Glide Lottie Fresco

D
ay

s 
(lo

g)

Fig. 9. Age of the refactoring subgraphs

Figure 10 shows an example of a subgraph describing
refactorings performed in few days on Spring Framework. In
commit C1, a developer renamed method before(Function)
to filterBefore(Function).7 After six days, the same
developer reverted the operation in commit C2, renaming
filterBefore(Function) to the original name.8 As a con-
sequence, these modifications created a subgraph with two
vertices and two edges.

RENAME Commit	C1

RENAME Commit	C2

Fig. 10. Example of a refactoring subgraph from Spring Framework

Summary: The age of the subgraphs is diverse: while some
have few days, the majority of the subgraphs have weeks or
even months. For example, 67% of the refactoring subgraphs
have more than one month.

D. (RQ4) Which Refactorings Compose the Refactoring Sub-
graphs?

First, we present the most common refactoring operations
in our sample of 1,150 refactoring subgraphs (Table III). Most
cases include rename method (21%), extract and move method
(19%), and extract method (17%). By constrast, we detected
only 83 occurrences of move and rename operations. There
are also few inheritance-based refactorings, i.e., pull up (330
occurrences) and push down (142 occurrences).

7https://github.com/spring-projects/spring-framework/commit/794693525f
8https://github.com/spring-projects/spring-framework/commit/91e96d8084



TABLE III
FREQUENCY OF REFACTORING OPERATIONS

Refactoring Occurrences %

Rename 757 21
Extract and move 685 19
Extract 635 17
Move 579 16
Inline 474 13
Pull up 330 9
Push down 142 4
Move and rename 83 2

All 3,685 100

Next, we categorize the subgraphs into two groups. The ho-
mogeneous group includes subgraphs with a single refactoring
operation. In contrast, the heterogeneous category comprises
subgraphs with at least two distinct refactoring operations. As
presented in Table IV, overall, around 28% of the subgraphs
are homogeneous, while 72% are heterogeneous. The results
per system follow a similar tendency. Most of the projects
have more heterogeneous subgraphs than homogeneous ones;
the sole exception is RxJava (57% vs 43%). In addition, as
presented in Figure 11, heterogeneous subgraphs often include
two distinct refactoring types (84%); in contrast, 12% have
three and only 4% have four or more distinct refactoring types.

TABLE IV
HOMOGENEOUS VS HETEROGENEOUS REFACTORING SUBGRAPHS

Project Homogeneous % Heterogeneous %

Elasticsearch 43 30.9 96 69.1
RxJava 56 57.1 42 42.9
Square Okhttp 22 25.3 65 74.7
Square Retrofit 12 35.3 22 64.7
Spring Framework 138 27,6 362 72,4
Apache Dubbo 6 20.0 24 80.0
MPAndroidChart 16 21.9 57 78.1
Glide 19 14.5 112 85.5
Lottie Android 5 21.7 18 78.3
Facebook Fresco 6 17.1 29 82.9

All 323 28.1 827 71.9

4%

12%

84%

4+

3

2

0 100 200 300 400 500 600 700
Occurrences

R
ef
ac
to
ri
ng
s

Fig. 11. Number of distinct refactoring operations in heterogeneous subgraphs

Figure 12 shows an example of a homogeneous subgraph
from Facebook Fresco. In this case, the subgraph represents
four extract operations performed over time. First, in commit
C1, a developer extracted method fetchDecodedImage(...)

from two methods into class ImageP ipeline.9 The next
operations happened years later when a second developer
made two new extract operations in commits C210 and C311.

EXTRACT

Commit	C2

EXTRACT EXTRACT

Commit	C1 Commit	C3

EXT
RAC

T

Fig. 12. Example of a homogeneous refactoring subgraph from Facebook
Fresco

Summary: Most refactoring subgraphs are heterogeneous
(71.9%), i.e., they include more than one refactoring type.

E. (RQ5) Are the Refactoring Subgraphs Created by the Same
or Multiple Developers?

As the last research question, we separate the refactoring
subgraphs into two groups. The first group includes subgraphs
with refactoring operations performed by a single developer.
The second category is the opposite; it holds subgraphs by
multiple developers. As presented in Table V, most subgraphs
have a single author (60.3%). As reported in a previous
question, the number of commits per subgraph is also small.
Thus, we execute Spearman’s test to evaluate the correlation
between the number of developers and the number of commits
for each refactoring subgraph. The correlation coefficient (rho)
is 0.244, with a p-value < 0.001, indicating a weak correlation
between these metrics. That is, the higher the number of
commits in a subgraph, the higher its amount of developers.

TABLE V
DEVELOPERS OF REFACTORING GRAPHS

Project Single dev. % Multiple devs. %

Elasticsearch 32 23.0 107 77.0
RxJava 88 89.8 10 10.2
Square Okhttp 32 36.8 55 63.2
Square Retrofit 14 41.2 20 58.8
Spring Framework 303 60.6 197 39.4
Apache Dubbo 17 56.7 13 43.3
MPAndroidChart 70 95.9 3 4.1
Glide 116 88.5 15 11.5
Lottie Android 11 47.8 12 52.2
Facebook Fresco 10 28.6 25 71.4

All 693 60.3 457 39.7

Figure 14 presents an example of a refactoring subgraph
from Square Okhttp. First, in commit C1, a developer
D1 renamed three methods from class OkHttpClient.12

Basically, the developer removed the prefix set from their

9https://github.com/facebook/fresco/commit/02ef6e0f
10https://github.com/facebook/fresco/commit/b76f56ef
11https://github.com/facebook/fresco/commit/017c007b
12https://github.com/square/okhttp/commit/daf2ec6b9



Fig. 13. Example of a large refactoring subgraph from Square Okhttp

names. After 10 months, a second developer D2 removed
a duplicate code from these methods, extracting method
checkDuration(...).13 Then, after seven months, D2
moved this method to a new class named Util, in commit
C3.14 As a result, these two developers were responsible
for a refactoring subgraph with eight vertices and seven edges.

RENAME

Commit	C1 Commit	C2

RENAME

RENAME

EXTRACT MOVE

EXTRACT

EX
TR
AC
T

Developer	D1 Developer	D2

Commit	C3

Fig. 14. Example of a refactoring subgraph create by multiple developers
from Square Okhttp

Summary: Most refactoring subgraphs are created by a single
developer (60%). Only 40% have multiple developers.

13https://github.com/square/okhttp/commit/c5a26fefd
14https://github.com/square/okhttp/commit/a32b1044a

V. LARGE SUBGRAPH EXAMPLE

In this section, we present and discuss an example of a
large refactoring subgraph. As we reported in Section IV,
most refactoring subgraphs are small, in terms of number
of vertices, edges, and commits. For this reason, we only
presented small examples when discussing our RQ results.
However, we also found graphs describing major refactorings
over time, whose presentation we postponed to this section.

Figure 13 shows an example from Square Okhttp. We chose
this example because it encompasses different refactoring
operations performed over time and it is one of the largest
subgraphs from our dataset. This graph has 37 vertices, four
commits, and three refactoring operations (move, push down,
and extract and move). It was built by multiple developers,
over six months. As we can observe, the graph nicely describes
an example of code duplication removal. First, a developer
performed nine push down refactorings to move a method from
a superclass to a subclass. Then, a second developer performed
21 extract method operations to move the duplicated code to
a single method, which has the following code:

public int readInt() throws IOException {
require(4, Deadline.NONE);
return buffer.readInt();

}

Besides that, there are other three extract method operations:
(i) readShort() from a single method (this node has a single
incoming edge), (ii) readByteString() from four methods, and
(iii) decode() from a single method. These new methods are
presented in the bottom of Figure 13.



VI. DISCUSSION AND IMPLICATIONS

A. Detecting Refactoring over Time

Several tools and techniques are proposed in the literature
to detect refactoring operations, for instance, Refactoring
Crawler [14], RefFinder [15], Refactoring Miner [3], [5], and,
more recently, RefDiff [13] and RMiner [16]. In common,
those approaches only detect atomic refactoring, i.e., opera-
tions that happen in a single commit and performed by a single
developer. In contrast, our approach, refactoring graph, focuses
on the detection of refactoring over time, i.e., operations
over multiple commits and performed by multiple developers.
Moreover, differently from the batch refactoring [1], [8], [9],
our approach is not constrained by the amount of developers
nor to a time window. Indeed, we found refactoring subgraphs
with age ranging from weeks to months and created by
multiple developers. Therefore, we contribute to the refactor-
ing literature with a novel approach to detect and explore
refactoring operations in a broader perspective to complement
existing tools and techniques.

B. Refactoring Comprehension and Improvement

When performing code review, developers often adopt diff
tools to better understand code changes, and decide whether
they will be accepted or not. In this process, developers may
also look for defects and code improvement opportunities [17].
However, if the reviewed change is large and complex,
this task becomes challenging [17]. To alleviate this issue,
refactoring-aware code review tools were proposed [18]–[20]
to better understand changes mixed with refactoring. Refac-
toring graphs can contribute to handle this issue by providing
navigability at method level. That is, a code reviewer may
navigate back in a method to reason how a similar change was
performed. For example, in Figure 14, a code reviewer may
investigate whether all methods were properly renamed in the
past, before accepting commit C3. Thus, refactoring graphs
can be integrated to code review tools to better support code
understating and improvement.

C. Detecting Refactoring Patterns and Smells

Frequent refactoring subgraphs may indicate common refac-
toring patterns over time. In contrast, infrequent refactoring
subgraphs that are variations of the pattern may suggest the
presence of “refactoring smells” that deserve to be fixed. For
example, suppose the refactoring subgraph shown in Figure 2
is frequent: a developer extracted two methods from m2(),
which are named a() and b(); then, b() was renamed to c(),
finally, c() was renamed back to b(). In this case, if we
find a single refactoring subgraph that does not include the
last renaming, this may suggest that the developer forgot to
perform the undo rename in one single case. In this sense,
refactoring subgraphs can be used to spot bad smells, which
are only visible because refactoring subgraphs provide the big
picture of the refactoring. Indeed, this is a topic that we aim
to deep assess in further research, possibly with the support of
techniques to mine graphs [21]–[23]. Thus, refactoring graphs

can foment the detection of refactoring anomalies over time
and drive future research agenda on refactoring patterns.

D. Understanding and Assessing Software Evolution

During software evolution, developers often perform refac-
toring operations. Consequently, the link between methods
may be lost [24]. For example, if a method a() is renamed to
b() and then extracted to c(), it becomes quite hard to trace a()
to c(), and vice versa. This has several implications to software
evolution research, particularly on studies that assess multiple
code versions, such as code authorship detection [25]–[29],
code evolution visual supporting [30], [31], bug introducing
change detection [32]–[36], to name a few. In practice, these
studies often rely on tools provided by Git and SVN, such
as git blame and svn blame, which show what revision
and author last modified each line of a file. However, this
process is sensitive to refactoring operations [24], [25]. As
Git and SVN tools cannot track fine-grained refactoring oper-
ations, particularly at method level, these approaches may miss
relevant data. For instance, in the aforementioned example, it
would be not possible to detect that method c() was originated
in method a(). Consequently, we would be not able to find the
real creator of method c() nor the developer who introduced
a bug on c(). With refactoring graphs, we are able to resolve
method names over time, thus, software evolution studies can
benefit as more precise tools can be created on the top.

VII. THREATS TO VALIDITY

Generalization of the results. We analyzed 1,150 refactoring
subgraphs from 10 popular and open source Java systems.
Therefore, our dataset is built over credible and real-world
software systems. Despite these observations, our findings—as
usual in empirical software engineering—may not be directly
generalized to other systems, particularly commercial, closed
source, and the ones implemented in other languages than
Java. Besides that, we focus our study on eight refactorings
at method level. Thus, other refactoring types can affect
the size of subgraphs. We plan to extend this research to
cover software systems implemented in other programming
languages and refactorings at class level.

Adoption of REFDIFF. We adopted REFDIFF to detect
refactoring operation because it is the sole refactoring
detection tool that is multi language, working for Java,
JavaScript, and C. It is also extensible to other programming
languages. Thus, as we plan to extend this research to
cover other programming languages than Java, REFDIFF was
the proper solution. In addition to be multi language,
REFDIFF accuracy is quite high. REFDIFF’s authors provide
two evaluations of their tool [13]. In the first evaluation, it
achieved an overall F-measure of 96.8% (precision: 100%;
recall: 93.9%). In the second evaluation, REFDIFF’s authors
analyzed 102 real refactoring instances. In this case, it
achieved an overall F-measure of 89.3% (precision: 85.4%;
recall: 93.6%). Recently, Tsantalis et al. [16] proposed the
refactoring detection tool RMINER. When considering all
refactoring operations, RMINER has an F-measure of 92%



(precision: 98%; recall: 87%) improving on REFDIFF’s overall
accuracy. However, RMINER works only for Java projects.

Building refactoring graphs. When creating the refactoring
graphs, we cleaned up our data (i.e., vertices and edges) to
keep only meaningful subgraphs. For instance, we removed
constructor methods (vertices) from our analysis because they
include mostly initialization settings, and do not have behavior
as conventional methods. We also removed some very specific
cases of refactoring (edges) in which REFDIFF reported false
positives in inner classes or same method. However, these
cases are not likely to affect our results because they only
represent a fraction (3.5%) of the refactoring operations.
Finally, the refactoring subgraphs can include unintentional
operations (e.g., reverted commits by automatic deployment
systems). To mitigate this threat, we focus our study on the
main branch evolution to avoid experimental or unstable
versions.

Detection of developers. In RQ5, we investigate the number
of developers per refactoring subgraphs. We used the email
available on git log to distinguish the developers. Thus, our
results can include the same developer committing with dif-
ferent email addresses. But, we already found that most cases
are subgraphs created by a single developer.

VIII. RELATED WORK

Refactoring is an usual practice during software evolution
and maintenance. Constantly, developers refactor the source
code for different purposes [3], [37]. For this reason, several
studies concentrate on this research field [1], [7], [8], [13],
[14], [16], [38]–[49]. Among the empirical studies, some
research focus on set of related refactoring. Specifically, these
studies analyze batch refactorings [1], [8], [9], [50]–[52].
Murphy et al. [1] analyzed four datasets from different sources,
all of these including metadata about the usage of Eclipse IDE.
For instance, the dataset named Everyone contains Eclipse
refactoring commands used by developers. Based on these
datasets, the authors discuss usage and configurations of refac-
toring tools, frequency of refactoring operations, and commit
messages. They also investigate about sets of refactorings
operations executed in 60 seconds of each another, which are
named batches. The authors state that the some refactorings
types are more common in batches, such as rename, introduce
a parameter, and encapsulate field. Besides that, about 47%
of refactorings performed using a refactoring tool happen
in batches. However, the baches involve a short period, the
study does not investigate refactorings operations that occur
in different moments over time.

In another context, Bibiano et al. [8] point out that sets of
related refactorings can solve problems due to code smells.
The authors studied 54 GitHub projects and three closed
systems. First, they used RMiner tool to detect 13 well-know
refactorings [16], resulting in 24,893 operations. Then, the
authors applied a heuristic to compute batch refactorings, i.e.,
set of related refactorings [9]. The heuristic includes two main
requirements do retrieve a batch refactoring: (i) there are more

than two refactoring operations in a single entity and (ii) the
operations are from a single developer. The results are 4.607
batch refactorings. Next, the authors used another tool and
scripts to identify more than 41K code smell occurrences in
these systems. Finally, the authors computed the effect of batch
refactorings to remove code smells. The main results show that
most batches have only one commit (93%) and two refactoring
types. Also, the authors state that batches have a negative or
neutral effect on code smells (81%). However, the authors
focus on code smells and operations performed by a single
developer. In our study, the subgraphs involve refactoring over
time (i.e., more than one commit), including subgraphs by
multiples developers and different code elements.

Other studies also discuss the impact of batches to eliminate
code smells, proposing approaches to reuse or suggest sets
of related refactoring operations [51]–[53]. Thus, they do
not focus on sequences of refactoring operations over time.
Fowler [10] mention a similar term called big refactoring.
The author points out that some refactorings are atomic, i.e.,
they are finished in a few minutes. By contrast, there are big
refactorings, which are performed during months or years. We
reinforce this observation: the age of the refactoring subgraphs
is diverse, ranging from days to weeks or even months.

Hora et al. [24] analyze untracked changes during software
development. The authors show that refactorings invalidate
several tracking strategies to evaluate system evolution. As in
our study, they represent evolutionary changes as graphs. In
this case, each node refers to a class or a method, and the edges
indicate tracked changes (i.e., entities that keep their names
after a modification) and untracked changes (i.e., entities that
change their names after a refactoring). In other words, a graph
represents traceable changes or alterations that split the entity’s
history. The results point up to 21% of the changes at the
method level and up to 15% at the class level are untraceable.
By contrast, in our study, the goal is to investigate refactorings
performed over long time windows; we do not concentrate on
tracked modifications on source code.

Meananeatra [54] also reports changes during software
evolution as graphs. However, the study concentrates on refac-
toring sequences to remove long methods. The author proposes
an approach based on two main criteria to detect an optimal
set of refactorings. An optimal refactoring sequence centers
on four metrics: number of removed bad smells, size of the
refactoring sequence, number of the affected code elements,
and the maintainability value (i.e., analyzability, changeability,
stability, and testability). The technique represents candidate
refactoring sequences as graphs. In this case, a graph contains
a root node representing the original method version with
smells. Each new node denotes a new method version after
a refactoring operation. As in our study, the edges refer to
refactorings. By contrast, the nodes represent the same method
before and after the changes. Each path in the graph is a
candidate refactoring sequence, which can meet the selection
criteria. Thus, the study does not focus on real refactorings
over time. Instead, the graph model represents steps to de-
compose a long method.



IX. CONCLUSION

In this paper, we proposed refactoring graphs, a novel
approach to assess refactoring operations over time. We
analyzed 10 popular Java systems from which 1,150
refactoring subgraphs were extracted. We then investigate
five research questions to evaluate the following properties
of refactoring graphs: size, commits, age, composition, and
developers. We summarize our findings as follows:

• The majority of the refactoring subgraphs are small (four
nodes and three edges). However, there also outliers with
dozens of nodes and edges.

• Most refactoring subgraphs have up to three commits
(95%).

• Refactoring subgraphs span from few days to months.
• Refactoring graphs are often heterogeneous, that is, they

are composed by several types of refactoring.
• Refactoring graphs are mostly created by a single devel-

oper (60%).
Based on our findings, we provided further discussion and

implications to our study. Particularly, (i) we discuss our
contributions regarding refactoring tools as a novel approach
to explore refactoring operations in a broader perspective;
(ii) we argue that refactoring graphs can be integrated to
code review tools to better support code comprehension; (iii)
we claim that refactoring graphs can play a role on the
detection of refactoring patterns and anomalies, only possible
to be spotted over time; and (iv) we state the importance
of refactoring graphs to resolve method names and support
software evolution studies.

Further studies can consider other popular programming
languages and ecosystems; refactoring graphs based on
class and package level as well as other refactoring types
at method level; and also novel approaches to complement
existing tools and techniques that focus on atomic refactorings.

ACKNOWLEDGMENTS

This research is supported by grants from FAPEMIG, CNPq,
and CAPES.

REFERENCES

[1] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” in 31st International Conference on Software Engineering
(ICSE), pp. 287–297, 2009.

[2] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A com-
parative study of manual and automated refactorings,” in 27th European
Conference on Object-Oriented Programming (ECOOP), pp. 552–576,
2013.

[3] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? Confes-
sions of GitHub contributors,” in 24th International Symposium on the
Foundations of Software Engineering (FSE), pp. 858–870, 2016.

[4] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understanding the
use of lambda expressions in Java,” Programming Languages, vol. 1,
no. 85, pp. 85:1–85:31, 2017.

[5] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, “A multidimensional
empirical study on refactoring activity,” in 23th Conference of the Center
for Advanced Studies on Collaborative Research (CASCON), pp. 132–
146, 2013.

[6] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refac-
toring challenges and benefits,” in 20th International Symposium on the
Foundations of Software Engineering (FSE), pp. 50:1–50:11, 2012.

[7] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study
of refactoring challenge and benefits at Microsoft,” Transactions on
Software Engineering, vol. 40, no. 7, pp. 633–649, 2014.

[8] A. C. Bibiano, E. F. D. O. A. Garcia, M. Kalinowski, B. Fonseca,
R. Oliveira, A. Oliveira, and D. Cedrim, “A quantitative study on
characteristics and effect of batch refactoring on code smells,” in
13th International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1–11, 2019.

[9] D. Cedrim, Understanding and improving batch refactoring in software
systems. PhD thesis, PUC-Rio, 2018.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[11] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of GitHub repositories,” in 32nd International
Conference on Software Maintenance and Evolution (ICSME), pp. 334–
344, 2016.

[12] H. Silva and M. T. Valente, “What’s in a GitHub star? Understanding
repository starring practices in a social coding platform,” Journal of
Systems and Software, vol. 146, pp. 112–129, 2018.

[13] D. Silva and M. T. Valente, “RefDiff: Detecting refactorings in version
histories,” in 14th International Conference on Mining Software Repos-
itories (MSR), pp. 1–11, 2017.

[14] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in 20th European
Conference on Object-Oriented Programming (ECOOP), pp. 404–428,
2006.

[15] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a
refactoring reconstruction tool based on logic query templates,” in 8th
International Symposium on Foundations of software engineering (FSE),
pp. 371–372, 2010.

[16] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in 40th
International Conference on Software Engineering (ICSE), pp. 483–494,
2018.

[17] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in 35th International Conference on Software
Engineering (ICSE), pp. 712–721, 2013.

[18] S. Hayashi, S. Thangthumachit, and M. Saeki, “Rediffs: Refactoring-
aware difference viewer for Java,” in 20th Working Conference on
Reverse Engineering (WCRE), pp. 487–488, 2013.

[19] X. Ge, S. Sarkar, and E. Murphy-Hill, “Towards refactoring-aware code
review,” in 7th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), pp. 99–102, ACM, 2014.

[20] X. Ge, S. Sarkar, J. Witschey, and E. Murphy-Hill, “Refactoring-aware
code review,” in Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 71–79, 2017.

[21] Xifeng Yan and Jiawei Han, “gSpan: graph-based substructure pattern
mining,” in 2nd International Conference on Data Mining (ICDM),
pp. 721–724, 2002.

[22] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm for
mining frequent substructures from graph data,” in 4th Principles and
Practice of Knowledge Discovery in Databases (PKDD), pp. 13–23,
2000.

[23] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” in 1st
International Conference on Data Mining (ICDM), pp. 313–320, 2001.

[24] A. Hora, D. Silva, R. Robbes, and M. T. Valente, “Assessing the
threat of untracked changes in software evolution,” in 40th International
Conference on Software Engineering (ICSE), pp. 1102–1113, 2018.

[25] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel approach for
estimating truck factors,” in 24th International Conference on Program
Comprehension (ICPC), pp. 1–10, 2016.

[26] F. Rahman and P. Devanbu, “Ownership, experience and defects: a
fine-grained study of authorship,” in 33rd International Conference on
Software Engineering (ICSE), 2011.

[27] A. Meneely and O. Williams, “Interactive churn metrics: socio-technical
variants of code churn,” Software Engineering Notes, vol. 37, no. 6,
2012.

[28] D. Spinellis, “A repository of Unix history and evolution,” Empirical
Software Engineering, vol. 22, no. 3, pp. 1372–1404, 2017.

[29] L. Hattori and M. Lanza, “Mining the history of synchronous changes
to refine code ownership,” in 6th International Working Conference on
Mining Software Repositories (MSR), 2009.



[30] V. U. Gómez, S. Ducasse, and T. D’Hondt, “Visually supporting source
code changes integration: the Torch dashboard,” in 17th Working Con-
ference on Reverse Engineering (WCRE), 2010.

[31] V. U. Gómez, S. Ducasse, and T. D’Hondt, “Visually characterizing
source code changes,” Science of Computer Programming, vol. 98,
no. P3, pp. 376–393, 2015.

[32] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, “Automatic
identification of bug-introducing changes,” in 21st International Confer-
ence on Automated Software Engineering (ASE), 2006.

[33] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead, Jr., “Mining
version archives for co-changed lines,” in 3rd International Workshop
on Mining Software Repositories (MSR), 2006.

[34] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “BugCache
for inspections: hit or miss?,” in 19th International Symposium on the
Foundations of Software Engineering (FSE), 2011.

[35] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan, “An empirical
study of dormant bugs,” in 11th Working Conference on Mining Software
Repositories (MSR), 2014.

[36] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. De-
vanbu, “On the naturalness of buggy code,” in 38th International
Conference on Software Engineering (ICSE), 2016.

[37] Y. Wang, “What motivate software engineers to refactor source code?
evidences from professional developers,” in International Conference on
Software Maintenance (ICSM), pp. 413–416, 2009.

[38] M. Mahmoudi, S. Nadi, and N. Tsantalis, “Are refactorings to blame?
an empirical study of refactorings in merge conflicts,” in 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 151–162, 2019.

[39] B. Lin, C. Nagy, G. Bavota, and M. Lanza, “On the impact of refactoring
operations on code naturalness,” in 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 594–598,
2019.

[40] J. Kim, D. Batory, D. Dig, and M. Azanza, “Improving refactoring speed
by 10x,” in 38th International Conference on Software Engineering
(ICSE), pp. 1145–1156, 2016.

[41] G. Szke, C. Nagy, R. Ferenc, and T. Gyimthy, “Designing and de-
veloping automated refactoring transformations: An experience report,”
in 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pp. 693–697, 2016.

[42] G. Bavota, A. D. Lucia, M. D. Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality and
refactoring,” Journal of Systems and Software, vol. 107, no. C, pp. 1–14,
2015.

[43] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,”
in 12th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pp. 104–113, 2012.

[44] D. Dig and R. Johnson, “How do APIs evolve? a story of refactoring,”
in 22nd International Conference on Software Maintenance (ICSM),
pp. 83–107, 2005.

[45] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, and Q. Wang, “Intel-
liMerge: A refactoring-aware software merging technique,” Program-
ming Languages, vol. 3, no. 170, pp. 170:1–170:28, 2019.

[46] R. Terra, M. T. Valente, S. Miranda, , and V. Sales, “JMove: A novel
heuristic and tool to detect move method refactoring opportunities,”
Journal of Systems and Software, vol. 138, pp. 19–36, 2018.

[47] E. L. G. Alves, M. Song, and M. Kim, “RefDistiller: A refactoring
aware code review tool for inspecting manual refactoring edits,” in
22nd International Symposium on Foundations of Software Engineering
(FSE), pp. 751–754, 2014.

[48] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive and
guided architectural refactoring with search-based recommendation,” in
24th International Symposium on Foundations of Software Engineering
(FSE), pp. 535–546, 2016.

[49] O. Chaparro, G. Bavota, A. Marcus, and M. D. Penta, “On the impact
of refactoring operations on code quality metrics,” in 30th International
Conference on Software Maintenance and Evolution (ICSME), pp. 456–
460, 2014.

[50] E. Fernandes, “Stuck in the middle: Removing obstacles to new program
features through batch refactoring,” in 41st International Conference on
Software Engineering: Companion Proceedings (ICSE), pp. 206–209,
2019.

[51] D. Tenorio, A. C. Bibiano, and A. Garcia, “On the customization
of batch refactoring,” in 3rd International Workshop on Refactoring
(IWOR), pp. 13–16, 2019.

[52] E. Fernandes, A. Uchôa, A. C. Bibiano, and A. Garcia, “On the alterna-
tives for composing batch refactoring,” in 3rd International Workshop
on Refactoring (IWOR), pp. 9–12, 2019.

[53] H. C. Jiau, L. W. Mar, and J. C. Chen, “OBEY: Optimal batched
refactoring plan execution for class responsibility redistribution,” Trans-
actions on Software Engineering, vol. 39, no. 9, pp. 1245–1263, 2013.

[54] P. Meananeatra, “Identifying refactoring sequences for improving soft-
ware maintainability,” in 27th International Conference on Automated
Software Engineering (ASE), pp. 406–409, 2012.


