
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Aline Norberta de Brito

Refactoring Graphs: Reasoning about Refactoring over Time

Belo Horizonte
2023

Aline Norberta de Brito

Refactoring Graphs: Reasoning about Refactoring over Time

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Doctor in Com-
puter Science.

Advisor: Marco Tulio de Oliveira Valente
Co-Advisor: Andre Cavalcante Hora

Belo Horizonte
2023

© 2023, Aline Norberta de Brito.

 Todos os direitos reservados

 Brito, Aline Norberta de.

B862r Refactoring graphs [recurso eletrônico]: reasoning about
 refactoring over time / Aline Norberta de Brito – 2023.
 1 recurso online (131 f. il, color.) : pdf.

 Orientador: Marco Tulio de Oliveira Valente.
 Coorientador: André Cavalcante Hora.
 Tese (Doutorado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação.
 Referências: f. 122 -131.

 1. Computação – Teses. 2. Engenharia de software – Teses
 3. Grafos de refatoração – Teses. 4. Mineração de repositórios
 de software – Teses. I. Valente, Marco Tulio de Oliveira. II. Hora,
 André Cavalcante. III. Universidade Federal de Minas Gerais,
 Instituto de Ciências Exatas, Departamento de Ciência da
 Computação. IV. Título.

CDU 519.6*32(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa

CRB 6/1510 Universidade Federal de Minas Gerais - ICEx

/"�1�'+��
��\����*�\��\ �"
+\��*�+\
�"+-�-/-$\��\��S"��
+\�4-
+\

&'$�*
\��\&T+��*�/
QP$\� \��S"��
\�
\�$ &/-
QP$\

���	���������������

��	�������
�����������������
���������	�������
����������

��
����������������
���

-;H;\:;<B:?:7\;\7EFCL7:7\E;@7\87B97\;N7A?B7:CF7\9CBHI?IJZ:7\E;@CH\+;B>CF;H	\

&(%��\ �(�%\-[KD\��\$��2��)�\1\���#.�\�\$F?;BI7:CF\
�;E7GI7A;BIC\:;\�?YB9?7\:7\�CAEJI7XWC\�\/� �\

&(%��\
#�(R\��\M\����#.�\�D)�\�\�CCF?;BI7:CF\
�;E7FI7A;BIC\:;\�?YB9?7\:7\�CAEJI7XWC\�\/� �\

&(%���\���,�\50!�\"�����3�\
�BHI?IJIC\:;\�?YB9?7H\ 7I;AVI?97H\;\:;\�CAEJI7XWC\�\/+&\

&(%��\��(#�#�%\�%,R\��,.%(\��\��!�\����%\
�;BIFC\:;\�B=FAVI?97\�\/�&�\

&(%��\��0�(�%\ ��#%\����,\���0��(��%\
�;E7FI7A;BIC\:;\�?YB9?7\:7\�CAEJI7XWC\�\/� �\

&(%���\-\�6�#�\/��U�\�%#.�\
�BHI?IJIC\:;\�CAEJI7XWC\�\/�\
 \

;@C\�CF?OCBI;�\��\:;\A7FXC\:;\�����\

Acknowledgments

Este manuscrito é o resultado de uma jornada de muito aprendizado, esforço e dedicação.

Gostaria de agradecer a todos que fizeram parte desta etapa tão importante na minha

vida.

Inicialmente, gostaria de agradecer a Deus, por permitir a conclusão desta etapa, e aos

meus familiares, pelo incentivo durante este curso de doutorado. Especialmente, gostaria

de agradecer aos meus pais, Bernadete e José Norberto, por todo apoio recebido, e ao

meu irmão, Rodrigo, pela amizade, conselhos, e presença durante este peŕıodo.

Gostaria de expressar também minha sincera gratidão ao meu orientador, Prof. Marco

Tulio Valente, que se tornou um grande mentor na minha vida e carreira. Agradeço

também ao meu coorientador, Prof. André Hora, cujo suporte e apoio foi fundamental

para conclusão desta etapa.

Aos meus amigos, agradeço pela amizade, apoio e por todos os momentos felizes pro-

porcionados. Especialmente, agradeço algumas amigas muito especiais que estiveram

presentes no decorrer deste peŕıodo.

Agradeço também aos meus colegas do ASERG e do DCC/UFMG, que fizeram esta

jornada ser mais leve e produtiva. Obrigada pelas conversas, suporte e amizade durante

este peŕıodo. Agradeço também aos meus colegas de trabalho, professores e alunos, pela

contribuição para o meu crescimento pessoal e profissional.

Aos membros da banca examinadora, agradeço pela disponibilidade em participar deste

trabalho.

Por fim, gostaria de agradecer também ao DCC/UFMG, CNPq, CAPES, e FAPEMIG,

pelo suporte financeiro, loǵıstico e profissional.

“Education is the most powerful weapon which you can use to change the world.”

(Nelson Mandela)

Resumo

Frequentemente, desenvolvedores refatoram o código, criando novas entidades ou al-

terando estruturas existentes. Algumas vezes, estas operações são realizadas em um curto

peŕıodo. Em outros casos, as operações geram sequências de modificações realizadas

ao longo do tempo, um cenário que usualmente não é considerado na literatura. Neste

contexto, o principal objetivo deste trabalho é caracterizar e compreender refatorações

realizadas ao longo do tempo. Para tanto, propõe-se uma nova abstração denominada

grafos de refatoração (refactoring graphs). Neste modelo baseado em grafos, os vértices

representam métodos ou funções e as arestas referem-se às operações de refatoração. Esta

pesquisa está organizada em três grandes trabalhos. Inicialmente, define-se a abstração

proposta, descrevendo os principais elementos e provendo um conjunto de scripts que

permite a detecção de grafos de refatoração em sistemas de software reais. Em seguida,

na segunda unidade de trabalho, caracteriza-se aproximadamente 1,5 mil grafos de refa-

toração provenientes de projetos Java e JavaScript populares hospedados no GitHub. Os

resultados confirmam que as refatorações não são apenas operações únicas, mas também

sequências de transformações realizadas ao longo do tempo. Além disso, um estudo quali-

tativo é realizado, no qual contactou-se os desenvolvedores responsáveis por subgrafos que

descrevem grandes operações, visando identificar as suas principais motivações. Por fim,

na última unidade de trabalho, explora-se aplicações para a abstração proposta na tese.

Inicialmente, avalia-se operações realizadas por alunos de uma disciplina de Engenharia

de Software, contando com os grafos de refatoração para compreender e inspecionar as

operações. Logo, assume-se a perspectiva de professor que almeja entender atividades

práticas neste contexto. Além disso, propõe-se um catálogo de refatorações comumente

realizadas ao longo do tempo, denominadas refatorações compostas. Os grafos de refa-

toração são utilizados para documentar e ilustrar instâncias do catálogo detectadas em

um oráculo com centenas de refatorações e no histórico de projetos populares hospedados

no GitHub.

Palavras-chave: Refatoração, Grafos de Refatoração, Mineração de Repositórios de

Software, Evolução de Software.

Abstract

Frequently, practitioners refactor their code, producing new entities or changing the struc-

ture of existing ones. Sometimes, these transformations are performed in a constrained

time frame. In other cases, they generate sequences of modifications performed over a

long time period, a scenario not usually considered in the literature. In this context, the

main goal of this Ph.D. thesis is to characterize and understand refactoring operations

performed over time. For this purpose, we introduce a novel abstraction for reasoning

about refactorings, named refactoring graphs. In this graph-based abstraction, nodes

represent methods or functions, and edges refer to refactoring operations. We organize

the research into three major working units. We start by defining the proposed abstrac-

tion, describing the elements and providing a set of scripts to detect refactoring graphs

in real-world projects. Then, in the second working unit, we characterize about 1.5K

refactoring subgraphs from popular Java and JavaScript projects hosted on GitHub. The

results confirmed our hypothesis that refactorings are not only sole operations. There are

also sequences of transformations performed over time. Besides, we also perform a qual-

itative study, in which we contact developers responsible by subgraphs describing large

operations, aiming to identify their main reasons to perform such operations. Finally, in

the last working unit, we explore applications of the proposed graph-based model. First,

we evaluate refactoring tasks performed by undergraduate students from a Software En-

gineering course, relying on refactoring graphs to understand and inspect the operations.

In other words, we assume a professor’s perspective who needs to understand practical

exercises on refactoring. We also propose a catalog of common refactorings performed

over time, which we decide to call composite refactorings. We rely on refactoring graphs

to document and illustrate instances of composites detected in an oracle with hundreds

of operations and in the history of popular projects hosted on GitHub.

Keywords: Refactoring, Refactoring Graphs, Mining Software Repositories, Software

Evolution.

List of Figures

1.1 Example of refactoring operations . 17

1.2 Example of a refactoring graph . 18

2.1 Example of an internal move operation in JavaScript (strikethrough text rep-

resents deleted line and the symbol “+” denotes added lines of code) 24

3.1 Refactoring subgraph produced by only one developer 33

3.2 Refactoring subgraph over time . 33

3.3 Example of refactoring subgraphs (Java) . 34

3.4 Example of refactoring subgraphs (JavaScript) 35

3.5 Example of a method structure in Java . 36

3.6 Example of refactoring graph (RG) formed by three subgraphs (G1, G2, G3) . 37

3.7 Example of over time graph patterns . 41

3.8 Example of possibly atomic graph patterns . 42

3.9 Example of an misleading refactoring graph pattern (inline → extract) 42

3.10 Size of refactoring subgraphs (Java) . 45

3.11 Example of a refactoring subgraph from MPAndroidChart (Java) 45

3.12 Size of refactoring subgraphs (JavaScript) . 46

3.13 Example of a refactoring subgraph from Quill (JavaScript) 46

3.14 Number of commits by refactoring subgraph 47

3.15 Example of a refactoring subgraph from Elasticsearch (Java) 48

3.16 Timespan of the refactoring subgraphs (Java) 48

3.17 Timespan of the refactoring subgraphs (JavaScript) 49

3.18 Example of a refactoring subgraph from Spring Framework (Java) 49

3.19 Example of a refactoring subgraph from Vue (JavaScript) 49

3.20 Number of distinct refactorings by subgraph (Java) 51

3.21 Number of distinct refactorings by subgraph (JavaScript) 52

3.22 Example of a homogeneous refactoring subgraph from Facebook Fresco (Java) . 52

3.23 Example of a heterogenous refactoring subgraph from Parcel (JavaScript) . . . 53

3.24 Example of a refactoring subgraph created by multiple developers in Square

Okhttp (Java) . 54

3.25 Example of a refactoring subgraph created by a single developer in Facebook

React (JavaScript) . 54

3.26 Patterns distribution (Java) . 55

3.27 Patterns distribution (JavaScript) . 56

3.28 Top-5 over time graph patterns . 56

3.29 Example of a refactoring graph pattern from Glide (Java, 153 occurrences) . . 57

3.30 Example of a possibly atomic graph pattern from Spring Framework (Java, 19

occurrences) . 57

3.31 Example of a refactoring graph pattern from RxJava (Java, 16 occurrences) . . 58

3.32 Email sent to the authors of refactoring subgraphs 60

3.33 Example of a large subgraph from Request (G1, JavaScript) 62

3.34 Example of a large subgraph from Square Okhttp (G4, Java) 62

3.35 Example of a large subgraph from RxJava (G3, Java) 63

3.36 Example of a large subgraph from Elasticsearch (G6, Java) 63

3.37 Example of a large subgraph from Spring Framework (G5, Java) 64

4.1 Class diagram of video store system (initial version) 73

4.2 Class diagram of video store system (final version) 74

4.3 Refactoring subgraph from Video Store System (ground-truth) 75

4.4 Distribution of the time to generate refactoring graphs per student 77

4.5 Example of a student’s refactoring subgraph. Dashed lines represent missing

edges and vertices (explicit guidelines, S02). 79

4.6 Refactoring operations to decompose method value() in subclass HtmlState-

ment (flexible guidelines, task 2) . 80

4.7 Textual diff produced by GitHub. S22 added two fields (preName and posName)

in the header line (explicit guidelines, task 3) 81

5.1 Example of composite refactoring from Spring Framework. Method doDispatch

was decomposed by applying six Extract Method refactorings 87

5.2 Representation of composite refactorings as refactoring graphs. Node v denotes

a program element (class or method) decomposed or composed by a performing

a set of refactoring operations . 89

5.3 Class Decomposition . 90

5.4 Method Decomposition . 91

5.5 Method Composition . 91

5.6 Composite Inline Method . 92

5.7 Composite Pull Up Method . 93

5.8 Composite Push Down Method . 94

5.9 Composite Pull Up Field . 95

5.10 Composite Push Down Field . 95

5.11 Distribution of commits per project (oracle) 97

5.12 Distribution of the size of composite refactorings (Oracle) 102

5.13 Example of Method Composition from Neo4j (Oracle) 102

5.14 Example of Method Decomposition in Elasticsearch 106

5.15 Distribution of the size of composite refactorings per project 107

5.16 Number of operations by composite refactoring (Class Decomposition) 107

5.17 Example of Class Decomposition in Lottie Android 107

5.18 Number of operations by composite refactoring (Method Decomposition) . . . 108

5.19 Number of operations by composite refactoring (Method Composition) 109

5.20 Number of operations by composite refactoring (Composite Pull Up Method) . 110

5.21 Size of composite refactorings (Composite Push Down Method) 110

5.22 Size of composite refactorings (Composite Inline Method) 110

5.23 Distribution of the time span of composite refactorings performed over multiple

commits (wild, 448 instances) . 111

List of Tables

2.1 Function and method level refactorings detected by RefDiff 24

3.1 Selected projects (Java and JavaScript) . 39

3.2 Frequency of refactoring subgraphs (Java) . 40

3.3 Frequency of refactoring subgraphs (JavaScript) 41

3.4 Numbers of the quantitative study . 43

3.5 Frequency of refactoring operations in subgraphs (Java) 44

3.6 Frequency of refactoring operations in subgraphs (JavaScript) 44

3.7 Frequency of refactoring operations (Java) . 50

3.8 Homogeneous vs heterogeneous refactoring subgraphs (Java) 50

3.9 Frequency of refactoring operations (JavaScript) 51

3.10 Homogeneous vs heterogeneous refactoring subgraphs (JavaScript) 52

3.11 Developers by refactoring graphs (Java) . 53

3.12 Developers by refactoring graphs (JavaScript) 53

3.13 Refactoring patterns . 55

3.14 Precision (Java) . 59

3.15 Precision (JavaScript) . 60

3.16 Numbers of the qualitative study . 61

3.17 Reasons to perform large refactoring subgraphs 61

3.18 Summary of refactoring graphs properties . 66

4.1 Subgraphs with mistakes in the explicit guidelines 78

5.1 Selected refactoring operations in the oracle 97

5.2 Conditions to cluster two refactoring operations (r1 and r2) into a composite . 98

5.3 Inspected sample of composite refactorings (Oracle) 100

5.4 Frequency of composite refactorings (Oracle) 101

5.5 Selected Java projects . 104

5.6 Frequency of composite refactorings (in the wild) 105

5.7 Characteristics of Method Decomposition (in the wild) 108

5.8 Characteristics of Method Composition (in the wild) 109

Contents

1 Introduction 14

1.1 Problem and Motivation . 14

1.2 Goals and Contributions . 16

1.3 Publications . 20

1.4 Thesis Outline . 21

2 Background & Related Work 23

2.1 Detecting Refactoring Operations . 23

2.2 Batch and Composite Refactorings . 24

2.3 Refactoring Comprehension . 26

2.4 Catalog of Refactorings . 29

2.5 Other Studies on Refactoring . 30

2.6 Final Remarks . 31

3 Defining and Characterizing Refactoring Graphs 32

3.1 Definition and Examples . 32

3.2 Quantitative Study . 37

3.3 Qualitative Study . 58

3.4 Discussion and Implications . 64

3.5 Threats to Validity . 67

3.6 Final Remarks . 69

4 Refactoring Comprehension Using Refactoring Graphs 71

4.1 Motivation . 71

4.2 Video Store System . 73

4.3 Refactoring Subgraph from Video Store System 74

4.4 Study Design . 75

4.5 Results . 78

4.6 Discussion . 81

4.7 Threats to Validity . 82

4.8 Final Remarks . 84

5 A Catalog of Composite Refactorings 85

5.1 Introduction . 86

5.2 An Example of Composite Refactoring . 87

5.3 Representing Composites with Refactoring Graphs 88

5.4 Catalog of Composite Refactorings . 89

5.5 A First Oracle of Composite Refactoring 96

5.6 Composite Refactoring in the Wild . 103

5.7 Discussion and Implications . 112

5.8 Threats to Validity . 113

5.9 Final Remarks . 114

6 Conclusion 115

6.1 Thesis Recapitulation . 115

6.2 Contributions . 117

6.3 Future Work . 118

Bibliography 122

14

Chapter 1

Introduction

This chapter introduces this Ph.D. thesis. We start by stating our problem and motivation

in Section 1.1. Section 1.2 details our objectives, goals, and intended contributions, while

Section 1.3 shows our current publications. Finally, we present the outline of this thesis

in Section 1.4.

1.1 Problem and Motivation

Refactoring is a key activity to preserve and evolve the internal design of software

systems. Due to the importance of the practice in modern software development, there

is a large body of papers and studies about refactoring, focusing on aspects such as

the usage of refactoring engines [70, 71], documentation of refactorings using commit

messages [70], motivations for performing refactorings [65, 86, 94], benefits and challenges

of refactoring [56, 57], among others.

Despite the extensive literature on this subject, time seems to be an under-investi-

gated dimension in refactoring studies, which usually consider refactoring as individual

and atomic operations. The notable exception involves studies on refactoring tactics, par-

ticularly on repeated refactoring operations, often called batch refactorings. For example,

Murphy-Hill et. al. [70] define batch refactorings as operations that execute within 60 sec-

onds of each other. They report that 40% of refactorings performed using a refactoring

tool occurs in batches, i.e., programmers repeat refactorings. But the authors also men-

tion that “the main limitation of [our] analysis is that, while we wished to measure how

often several related refactorings are performed in sequence, we instead used a 60-second

heuristic”. As a second example, Bibiano et. al. [12] investigate the characteristics and

impact of batch refactorings on program elements affected by smells. The authors rely

on a heuristic to retrieve batches [26], which they define as sequences of refactorings per-

formed by the same author in a single code element. Thus, even this extended heuristic

focuses on single methods or classes, most of the cases resulting in batches with a single

1.1. Problem and Motivation 15

commit (93%).

Interestingly, in his seminal book on refactoring, Fowler [35] dedicates a chapter—

co-authored with Kent Beck—to big refactorings. They claim that when studied indi-

vidually refactorings do not provide a whole picture of the “game” played by developers

when improving software design. Literally, the author states that“refactorings take time

[to be concluded]”. Fowler reinforces this observation in the second edition of his book by

discussing long-term refactorings [36], which may require an effort of weeks to complete.

However, understanding and reasoning about refactorings performed over time is

a nontrivial task, for the main reasons:

• Modern detection tools report refactoring at a fine granularity level, restricting the

operation to a short time and scope. For example, RefactoringMiner [95, 96] and

RefDiff [85, 87] detect refactorings as independent changes, which are restricted and

confined to a single commit. As a consequence, it is not trivial to retrieve sequences

of refactoring operations performed over days or weeks.

• Developers widely rely on source code history to understand the evolution of code

or elements [59]. However, refactoring operations may create ruptures in such his-

tories, interfering to track the changes [38, 43, 49, 83]. For example, when we move

a method m() from class Foo to class Bar, GitHub diff shows the addition of a new

method and removal of the previous one. However, the operation does not intro-

duce a new program element: it is only a “fork” in the method history due to the

refactoring.

• Catalogs of refactorings often focus on single transformations [35, 36]. We still need

reference guides and standardized vocabulary, which can be used to guide developers

when performing and documenting sequences of operations over time. We can ob-

serve this problem in a commit from Robovm, a compiler for Java bytecode.1 In this

commit, for instance, the developer performed 29 extractions to create the method

has(CFString) [93, 96]. The developer may not understand the whole scenario by

inspecting individual parts. Therefore, ideally, these operations could be clustered

under a single composite refactoring, for example, named Method Composition. In

other words, in many programming contexts, it is better to reason and look at these

refactorings as a single transformation than as disconnected ones. An analogy can

be made with the chemistry concepts of atoms, which are basic units of matter that

compose molecules.

In summary, focusing on independent refactoring operations does not cover the

whole scenario, since refactoring performed over time is a relevant aspect that affects

several algorithms, tools, approaches, and software tasks as well [30, 43, 72, 90].

1https://github.com/robovm/robovm/commit/bf5ee44b

https://github.com/robovm/robovm/commit/bf5ee44b

1.2. Goals and Contributions 16

To our knowledge, refactorings performed over long time windows are not deeply

studied by the literature.

1.2 Goals and Contributions

As previously mentioned, we still need to better understand and document refac-

toring operations performed over time. Also, it is necessary to provide abstractions to

support a broad comprehension of refactoring. Hence, our main goal in this thesis is

described as follows:

We provide an in-depth study on refactoring operations performed over time. For this

purpose, we propose, define, and explore an abstraction to support practitioners and

researchers when understanding, documenting, and visualizing refactoring operations

that are not restricted to a single period.

To achieve this objective, we divided the thesis into three working units:

1. Initially, we proposed a new abstraction named refactoring graphs, aspiring to assess

and understand refactoring operations over time.

2. In the second working unit, we explored the characteristics of refactoring operations

performed over time, relying on refactoring graphs to conduct this exploration.

3. The results from the second working unit confirmed that refactorings are not inde-

pendent operations, inspiring two further studies involving software understanding

and documentation. First, we performed a study relying on refactoring graphs to

evaluate and visualize refactoring tasks performed by undergraduate students from

a Software Engineering course. Then, we used refactoring graphs to document a

catalog of sequences of refactoring operations which we decided to call composite

refactorings.

We summarize each work and highlight their contribution in the remainder of this section.

1.2. Goals and Contributions 17

1.2.1 Definition of Refactoring Graphs

In this thesis, we initially proposed an abstraction named refactoring graphs, aim-

ing to study and reason about refactoring operations over time.

In such graphs, the nodes are methods or functions, and the edges represent

refactoring operations. For example, suppose that method details() is renamed to

printDetails() in class Client, as shown in Figure 1.1. This operation is represented

by two nodes and one edge connecting them.2 After this first refactoring, suppose that two

methods called printInfo() and printContact() are extracted from printDetails().

As a result, edges connecting printDetails() to new nodes are also added to the graph,

representing printInfo() and printContact().

Therefore, these operations generate a refactoring graph with four nodes and three

edges, as presented in Figure 1.2. It is worth noting that, refactoring graphs do not impose

time constraints on the represented refactoring operations. In our example, the rename

operation, for instance, can be performed months after the extract operations. Also, it

does not include details about the order of the refactoring operations. However, it is

possible to retrieve this information from the metadata in the edge. Finally, refactoring

graphs may include refactorings performed by different developers. In our example, the

rename operation can be performed by d1 and the extract by another developer d2.

Figure 1.1: Example of refactoring operations

- System.out.println("Phone: " + this.phone);
- System.out.println("Email: " + this.email);
- System.out.println("Address: " + this.address);

}

class Client{

float details(){
System.out.println("Name: " + this.name);
System.out.println("Gender: " + this.gender);
System.out.println("Phone: " + this.phone);
System.out.println("Email: " + this.email);
System.out.println("Address: " + this.address);

}
}

- void details(){

class Client{

float details(){

 }

+ void printDetails(){
RENAME

class Client{

void printDetails(){

}

}

+ printInfo();
+ printContact();

+ void printInfo(){
+ System.out.println("Name: " + this.name);
+ System.out.println("Gender: " + this.gender);
+ }

+ void printContact(){
+ System.out.println("Phone: " + this.phone);
+ System.out.println("Email: " + this.email);
+ System.out.println("Address: " + this.address);
+ }

EX
TR
AC
T

EX
TR
AC
T

- System.out.println("Name: " + this.name);
- System.out.println("Gender: " + this.gender);

2After a rename operation, for instance, developers must update the code to use the new method
signature. However, the traceability of these changes is outside the scope of the proposed graph-based
abstraction.

1.2. Goals and Contributions 18

Figure 1.2: Example of a refactoring graph

EXTRACT

EXTR
ACT

RENAME
'

In summary, in this first working unit, the main contribution concerns the proposal

and definition of this graph-based model by conducting two main activities:

• We formalized the proposed abstraction, i.e., we defined how to represent nodes

and edges. We start by providing an overview, using examples to clarify the graph

model. Then, we define the graph-based model by describing the elements and steps

to build such graphs.

• We implemented a set of scripts to mine and visualize refactoring subgraphs, aiming

to provide tool support for investigating refactoring practices beyond single and

independent operations.

1.2.2 Characterization of Refactoring Graphs

In the second working unit, we seek to empirically study and characterize refac-

toring operations performed over time, relying on refactoring graphs for this purpose.

Particularly, we focused on refactoring operations performed on popular GitHub projects.

Besides Java projects, we also study refactorings in JavaScript systems, aiming to fill the

gap in studies about refactoring in dynamic programming languages. In this working

unit, we are providing the following main results and contributions:

• We revealed several characteristics of a large sample of refactoring operations per-

formed over time, extracted from 20 real-world software projects. Specifically, we

investigated six characteristics of 1,525 refactoring subgraphs from well-known and

popular Java and JavaScript projects: size, number of commits, time span, homo-

geneity, ownership, and common patterns. The results confirmed our hypothesis

that refactorings are not only sole operations but also sequences of operations per-

formed over time. Indeed, refactorings over time are very common, though most

refactoring graphs are small in terms of the number of refactoring operations.

• As a complementary perspective to the quantitative analysis, we performed a survey

with authors of large refactoring subgraphs. In this study, we asked about their

1.2. Goals and Contributions 19

motivations for performing the refactoring operations. Most developers mentioned

large refactorings were performed to improve design, facilitate the implementation

and maintenance of new features, or bug fixing.

• We discussed several applications of refactoring graphs. In particular, we mention

that they can be a key abstraction for improving current refactoring tools, which

focus on single refactoring operations. We also discussed the applications for refac-

toring graphs in other scenarios, such as code visualization and comprehension.

• Finally, we designed and implemented a web application to easily visualize refactor-

ing graphs, which is publicity available at https://refactoring-graph.github.io

1.2.3 Applications of Refactoring Graphs

Using a canonical example proposed by Fowler [35], we also investigated how refac-

toring graphs can help program comprehension. Particularly, we assumed the perspective

of educators who need to understand refactoring operations performed by students. We

used refactoring graphs to visualize, understand, and evaluate the refactorings performed

by 46 undergraduate students of a Software Engineering course.

Specifically, we invited students to perform refactoring tasks under two distinct

scenarios. First, the students followed a list of explicit and well-defined guidelines, i.e.,

refactoring tasks with precise instructions about the piece of code that should be refac-

tored. Then, they also performed refactoring tasks following flexible and open guidelines.

The refactoring tasks generate a large refactoring subgraph with 24 nodes and 26 edges.

Then, we relied on two strategies to evaluate the results. In the case of explicit

guidelines, we used a similarity metric to compare our ground-truth subgraph with the

students’ subgraphs. For the second part, flexible guidelines, we performed a manual

inspection by verifying entity names and operations.

1.2.4 Catalog of Composite Refactorings

In previous working units, we mined hundreds of refactoring graphs. Among the

results, we noticed recurring sequences of refactoring operations to compose or decompose

a program element. For instance, we noticed that developers frequently perform multiple

https://refactoring-graph.github.io

1.3. Publications 20

Extract Method operations from distinct methods, aiming to generate a single one. However,

the most popular refactoring catalog—proposed by Fowler [35, 36]—does not document

these observed groups of transformations. Instead, it provides examples and mechanics

to perform mostly single refactoring operations. Therefore, in this final working unit, we

proposed a refactoring catalog, and we decided to call them composite refactorings [62,

89, 96]. In this context, we provide the following contributions:

• We introduced a catalog, which includes eight instances of sequences of refactoring

operations to compose or decompose program elements. As usual in refactoring

catalogs, we defined the involved refactoring types and their mechanics. We also

relied on refactoring graphs to document and visualize instances of the composite

refactorings from relevant software systems.

• We implemented a set of scripts to detect the composite refactorings in this catalog.

The scripts provide visual outputs based on refactoring graphs.

• We characterized a large sample of composite refactorings in two datasets. We first

mined composites from a well-known refactoring oracle [93, 95, 96], which includes

hundreds of atomic refactoring instances. Particularly, we show that about 60%

of such refactorings are part of composite instances. Then, as a complementary

analysis, we mined composite refactorings in the history of popular GitHub projects.

1.3 Publications

The results of this thesis generated the following publications:

• SANER’20 Brito, A., Hora, A., and Valente, M. T. Refactoring graphs: Assessing

refactoring over time. In 27th International Conference on Software Analysis, Evolu-

tion and Reengineering (SANER), pages 367–377, 2020. doi: 10.1109/SANER48275.

2020.9054864. (Chapter 3)

• EMSE’21 Brito, A., Hora, A., and Valente, M. T. Characterizing refactoring graphs

in Java and JavaScript projects. Empirical Software Engineering, 26, 2021. doi:

10.1007/s10664-021-10023-3. (Chapter 3)

• CibSE’22 Brito, A., Hora, A., and Valente, M. T. Understanding refactoring tasks

over time: A study using refactoring graphs. In 25th Ibero-American Conference on

Software Engineering (CIbSE), pages 330–344, 2022. doi: 10.5753/cibse.2022.20982.

(Chapter 4)

1.4. Thesis Outline 21

• JSEP’23 Brito, A., Hora, A., and Valente, M. T. Towards a catalog of composite

refactorings. Journal of Software: Evolution and Process, e2530, 2023. doi: 10.1002/

smr.2530. (Chapter 5)

The following publication represents an earlier research effort during this Ph.D.:

• EMSE’20 Brito, A., Valente, M. T., Xavier, L., and Hora, A. You broke my code:

Understanding the motivations for breaking changes in APIs. Empirical Software

Engineering, 25:1458–1492, 2020. doi: 10.1007/s10664-019-09756-z.

1.4 Thesis Outline

We organize this thesis as follows:

Chapter 2 comprises the state of the art. We separate related work into four categories,

involving batch and composite refactorings, catalogs, refactoring comprehension,

and refactoring practices during software evolution. We highlight the main differ-

ences between such works and ours. We also briefly discuss the tool that is used to

detect refactoring operations in this thesis.

Chapter 3 provides basic concepts on refactoring graphs, which is the abstraction pro-

posed in this thesis to assess refactorings over time. We also detail the elements

and steps to build this graph-based abstraction. Next, we present a study aiming

to understand, characterize, and compute the occurrences of refactoring graphs in

two programming languages: Java and JavaScript. We describe the study method-

ology as well as its findings based on a sample of approximately 1.5K refactoring

subgraphs.

Chapter 4 details a first application of refactoring graphs, where we explore how refac-

toring graphs can assist educators in Software Engineering courses. Specifically, we

used the proposed abstraction to understand refactoring operations performed by

undergraduate students.

Chapter 5 shows a second application of refactoring graphs, inspired by insights from

previous analyses described in Chapter 3. Specifically, we introduce a catalog of

composite refactorings, i.e., sequences of operations to compose or decompose a

source program element. We also rely on our graph-based model to document and

illustrate the instances of the catalog.

1.4. Thesis Outline 22

Chapter 6 summarizes the conclusions we leveraged throughout this thesis. It also

outlines some ideas we find interesting to investigate in the future.

23

Chapter 2

Background & Related Work

In this chapter, we present background information and work related to this PhD thesis.

First, we introduce RefDiff, the tool that we use to detect refactoring operations (Section

2.1). Next, we present studies related to refactoring operations (Section 2.2). Particularly,

we discuss two central types of studies: on batch refactorings and on composite refactor-

ings. Moreover, we also present in this chapter an overview of other works, highlighting

their differences to this thesis content. Specifically, we report field studies on refactoring

comprehension (Section 2.3) by considering the educational and developer perspective.

We also discuss catalogs of refactoring (Section 2.4), contrasting with the study reported

in Chapter 5. Finally, we describe other studies on refactoring (Section 2.5), which are

related with the studies described from Chapters 3 to 5. We conclude this chapter with

general statements about the discussed topics (Section 2.6).

2.1 Detecting Refactoring Operations

RefDiff is a tool to detect refactoring operations [85, 87]. The current version is

based on the Code Structure Tree (CST), which provides a language-agnostic representa-

tion of the source code. As a consequence, it is possible to detect refactorings in multiple

languages. In this thesis, we concentrate on two programming languages supported by the

tool: Java and JavaScript. Also, we focus on operations at the method or function level.

Table 2.1 lists the refactorings detected by RefDiff at these levels. As we can notice, both

languages have known refactorings, comprising extract and inline operations, as well as

changes in method’s signature (i.e., rename and move).

Since JavaScript is a prototype-based language, there are no inheritance-based

refactorings (i.e., pull up and push down). In additon, JavaScript systems usually contain

large files that are composed of several nested elements. For this reason, many refactorings

occur on a single file. RefDiff reports these cases as internal operations. Figure 2.1 shows

an example of an internal move operation. In this case, the developer moved function f1

2.2. Batch and Composite Refactorings 24

from fa to fb. However, both functions are located in a single file.

Table 2.1: Function and method level refactorings detected by RefDiff

Language Refactoring

Java rename method, move method, move and rename method,
inline method, extract method, extract and move method,
push down method, pull up method

JavaScript rename function, move function, move and rename function,
inline function, extract function, extract and move function,
internal move function, internal rename and move function

Figure 2.1: Example of an internal move operation in JavaScript (strikethrough text
represents deleted line and the symbol “+” denotes added lines of code)

1 function fa() {

2 f1 = () => {

3 ...

4 }

5 f2 = () => {

6 ...

7 }

8 return {f1, f2};

9 }

10
11 function fb() {

12 + f1 = () => {

13 + ...

14 + }

15 + return {f1};

16 }

2.2 Batch and Composite Refactorings

There are two central types of studies regarding groups of related refactoring op-

erations, studies on batch refactorings and studies on composite refactorings. Batch refac-

torings refer to a set of single refactoring operations, which are then grouped considering

criteria such as time [69, 70], version system [26], and developers [12, 26]. As mentioned

by Cedrim et. al. [26],“the way the batches are synthesized is open-ended, i.e., different

developers can have different views of how to create a batch”. Similarly, composites are

defined as sequences of atomic refactoring operations [62, 89, 96]. This concept is ex-

2.2. Batch and Composite Refactorings 25

plored in contexts like domain specific languages for describing refactoring [62] and code

smells [13, 89].

Murphy-Hill et. al. [70] analyzed four datasets from different sources, all of these

including metadata about the usage of Eclipse IDE. For instance, the dataset named

Everyone contains Eclipse refactoring commands used by developers. Based on these

datasets, the authors discuss usage and configurations of refactoring tools, frequency of

refactoring operations, and commit messages. They also investigated refactorings opera-

tions executed in 60 seconds, which are named batches. The authors state that the some

refactorings types are more common in batches, such as rename, introduce a parameter,

and encapsulate field. Besides that, about 47% of refactorings performed using a refactor-

ing tool happen in batches. However, the batches involve a short period: the study does

not investigate refactorings operations that occur in different moments over time.

In another context, Bibiano et. al. [12] point out that sets of related refactorings

can solve problems due to code smells. The authors studied 54 GitHub projects and

three closed systems. First, they used RefactoringMiner tool to detect 13 known refactor-

ings [95], resulting in 24,893 operations. Then, the authors applied a heuristic to compute

batch refactorings, i.e., set of related refactorings [26]. The heuristic includes two main

requirements do retrieve a batch refactoring: (i) there are more than two refactoring op-

erations in a single entity and (ii) the operations are from a single developer. The results

are 4.607 batch refactorings. Next, the authors used another tool and scripts to identify

more than 41K code smell occurrences in these systems. Finally, the authors computed

the effect of batch refactorings to remove code smells. The main results show that most

batches have only one commit (93%) and two refactoring types. Also, the authors state

that batches have a negative or neutral effect on code smells (81%). However, the au-

thors focus on code smells and operations performed by a single developer. In our study

described in Chapter 3, the subgraphs involve refactoring over time (i.e., more than one

commit), including subgraphs by multiples developers and different code elements.

Sousa et. al. [89] originally defined composite refactorings as “two or more in-

terrelated refactorings that affect one or more elements”. The detection of composite

refactoring relies on three distinct heuristics. The first heuristic–called element-based–

combines single refactoring operations by the scope. The scope can be, for instance, a

single class. For example, the authors show a composite refactoring from this category,

which includes the movement of attributes, movement of methods, and extract superclass

operations. The commit-based heuristic links refactoring operations performed in a single

commit. Finally, the third heuristic—named range-based—connects refactorings by loca-

tion (e.g., if a refactoring crosscuts two classes named C1 and C2, both are part of the

location). As a consequence, an instance of a composite can include mixed operations

at distinct levels, i.e, classes, attributes, and methods. In summary, the study considers

some criteria to cluster composites, also reusing previous heuristics [12, 26]. However,

2.3. Refactoring Comprehension 26

they do not introduce and document a catalog of composite refactorings (as we do in

Chapter 5) and a significant part of the study investigates the relevance of composites

for removing code smells. Although we are reusing the definition, in this PhD thesis, we

explore another perspective. Specifically, in Chapter 5, our key goal is to propose and

document a catalog of composite refactorings. Moreover, we also show the importance of

composite refactorings by mining and characterizing their occurrence in two datasets: a

sample with hundreds of confirmed single refactoring operations and the history of ten

known open-source projects. For this purpose, we rely on refactoring graphs to document

and visualize instances of the composite refactorings in real-world scenarios.

There are also studies focusing on subcategories of composite refactorings. For

example, “incomplete composites” [11], i.e., when the composite refactoring “is not able

to entirely remove a smelly structure”.

Fowler [35] mention a similar term called big refactoring. The author points out

that some refactorings are atomic, i.e., they are finished in a few minutes. By contrast,

there are big refactorings, which are performed during months or years. We reinforce this

observation in Chapter 3: the time span of the refactoring subgraphs is diverse, ranging

from days to weeks or even months.

2.3 Refactoring Comprehension

Several studies aiming to understand refactoring activities. A significant part of

them focuses on developers’ perception of refactoring. In this case, the goal involves

understanding refactoring activities by investigating, for example, benefits and chal-

lenges [56, 57], merge conflicts [64], motivations to refactor a source code [75, 76, 86, 99],

association with technical debt [50], and refactoring opportunities [25].

Silva et. al. [86] performed firehouse interviews to understand the reasons behind

refactoring operations in GitHub projects. Based on 195 developers’ answers, the authors

found 44 reasons to refactor methods and attributes in Java. As in our study reported in

Chapter 3, the authors contacted GitHub developers by email and used thematic analysis

to examine the responses [29]. Five refactoring instances are also in our study: extract

method, move method, inline method, pull up method, and push down method. Besides that,

there are related motivations in our category improve code design (e.g., the movement of

elements to an appropriate container). However, in our research presented in Chapter

3, we investigate sets of refactoring operations that generate large subgraphs in Java

and JavaScript systems. This is different from the mentioned study, which focuses on

motivations behind refactorings performed in a single commit and Java projects. That

2.3. Refactoring Comprehension 27

is, in our study, we explore another perspective, centering on a large set of refactoring

activities over time in distinct software ecosystems.

A recent study also assesses motivations behind refactoring instances [75]. The

authors conducted quantitative and qualitative research on a large scale by analyzing

refactoring activities in 150 GitHub projects. In the quantitative part, the authors discuss

metrics involving code quality (e.g., number of elements, the coupling between classes),

code smells, and process-related factors (e.g., number of commits in releases, number

of fixed bugs). The qualitative results extend the catalog proposed by Silva et al. [86],

adding 26 new ones. The motivations are based on discussions in 551 pull requests,

as well as comments in the related commits. In Chapter 3, our category improve code

design is inspired by a core theme proposed by this research, involving the improvement

of encapsulation and maintainability. Besides, our category “fix bugs or improve existing

features” also incorporates another theme, which is called “Prevent Bugs”. Interestingly,

the main authors’ findings point out that 52% of the cases, the discussions do not focus

on a particular refactoring, i.e., the developers mention a combination of refactoring

operations. However, the study focuses only on operations mentioned in pull requests

and Java projects.

Lastly, the improvement of existing features is also reported in a recent study about

refactoring operations in the code review process [73]. Similar to our results and previ-

ous researches [74, 75, 86], the authors mention the occurrence of refactoring operations

associated with feature maintenance or bug fixing. The authors also reinforce the idea

that refactoring is not a sole operation by investigating sequences in code reviews. The

main findings point to Extract methods occurring with other refactoring types in the Java

ecosystem. In Chapter 3, we used the Gspan algorithm to investigate refactoring patterns

in the subgraphs [102]. However, in our study, the most recurrent pattern in Java refers

to successive rename operations, occurring in 153 subgraphs. Our results also suggest

that patterns do not necessarily occur between reviews. That is, refactoring patterns can

happen in a single commit, i.e., atomic subgraphs.

As previously mentioned, most studies focus on open-source developers’ perspec-

tives. On the educational side, research on refactoring covers distinct scenarios. Demeyer

et. al. [31] propose refactoring examples for students. López et. at. [63] propose activities

to teach refactoring in Computer Science. The study suggests a set of tasks, such as read-

ing texts, comprehension of refactoring catalogs, and practical exercises. Other studies

discuss approaches and lessons to promote refactoring practices [34, 46, 92]. There are

also tools to improve the student’s perception of refactoring [3]. However, the mentioned

studies do not consider graph-based abstractions to evaluate refactoring activities over

time.

Keuning et. al. [54] performed a study with 133 students from the second year of

a Software Engineering course. The experiment uses a tutoring system, which contains

2.3. Refactoring Comprehension 28

a set of refactoring exercises and provides feedback during the refactoring tasks. Specif-

ically, there is an option to check the student progress, and a second functionality to

get hints (i.e., to diagnose and provide suggestions). The experiment happened during

one hour, including 15 minutes to discuss code quality and demonstration of the tool, 30

minutes to perform the refactoring tasks, and 15 minutes to answer a survey about the

experiment. As in our study reported in Chapter 4, the authors pointed to a high rate of

refactoring tasks performed successfully. The results also show that students frequently

used the features to get hints and visualize their progress. The students’ mistakes were

extracted from log entries of the system. However, most of them are outside the scope of

refactoring. For example, the authors report compiler errors due to language unsupported

constructs, runtime errors, and failed tests. Besides, each of the five exercises involved

an isolated issue. For example, two tasks are from a website that contains a list of code

problems. In Chapter 4, we use a canonical refactoring example (proposed by Fowler [35],

with 18 refactoring tasks) and leverage refactoring graphs to assess refactoring operations

performed over time.

Shamsa et. al. [2] conducted a study with 23 students. Each group performed

a kind of project scheme in a real-world system. The first scheme contains a set of

software changes, ending with refactoring tasks. In contrast, the second scheme starts

with refactoring issues. The authors reported better results in the second one. However,

the study does not concentrate exactly on refactoring comprehension. The authors focus

on the main differences by performing refactoring operations before and after functional

improvements of the system. Besides, the tasks are performed by two or three students.

Thus, different students’ perceptions of refactoring can influence the results. In Chapter

4, each result refers to a single student. In addition, our guidelines are based on a known

refactoring example.

Karac et. al. [53] investigated the impact of task granularity on Test-Driven De-

velopment (TDD). Overall, the study encompasses five main steps. For example, there

are steps to implement a feature and the respective tests. The last step involves refac-

toring operations to improve code quality. The study involves 52 students, most of them

are novice programs. The tasks rely on programming exercises, which are essentially al-

gorithmic. A group of students performed decomposed tasks. In contrast, the second

group received tasks without decomposition in small steps. Among the main results, the

authors argue about the importance of breaking larger work into smaller ones, mainly for

novice practitioners. However, the study concentrates on the granularity of issues, and

the refactoring operations are just a step of the experiment.

2.4. Catalog of Refactorings 29

2.4 Catalog of Refactorings

Catalogs constitute a reference guide for communication between practitioners

since they standardize a common refactoring vocabulary. Developers frequently rely on

such documents to learn and perform refactoring operations. Fowler’s book includes a

popular and widely used catalog of refactoring operations [35, 36]. However, in his semi-

nal book, most examples and mechanics describe how to perform single and independent

refactoring operations. The recent version includes new composite refactorings, such as

Inline Class and Collapse Hierarchy.1 In the case of Inline Class, we eliminate a class by moving

all elements to distinct ones. Therefore, it is a subcategory of Class Decomposition, which

is described in Chapter 5. However, the current refactoring detection tools do not sup-

port this composite [6, 22, 85, 87, 95, 96]. In Collapse Hierarchy, we eliminate subclasses

by moving all elements to the superclass. Therefore, Composite Pull Up Method can be a

part of this operation, which is another instance from our catalog. The current version

of RefactoringMiner detects this refactoring [96]. However, it is not properly explored in

the literature. For example, the oracle used in Chapter 5 includes only a single instance

of Collapse Hierarchy.

Recently, Bibiano et. al. [13] investigated “complete composites”, i.e., sets of refac-

toring operations that remove the whole occurrence of four code smell types. The study

includes 618 complete composites formed by known refactoring operations. Differently

from our study, the identification of composite refactorings relies on a range-based heuris-

tic defined in previous studies [89], which groups refactorings affecting the same location.

The authors also present a catalog of complete composites to remove code smells. This

catalog includes five complete composites, which are sequences of Move Method or Extract

Method operations. For example, their catalog focuses on the removal of Long Method

(i.e., large and complex methods) and Feature Envy (i.e., a method that uses several

methods from a distinct class). For each instance, the authors discuss side-effects, i.e.,

when a composite removes a target code smell but introduces other ones. Among the

five complete composites from their catalog, three instances refer to extract operations to

remove long methods. However, in the first case, the extraction contributes to introducing

a Feature Envy. The second one does not reduce the method’s size, i.e., it is necessary to

perform new extract operations to remove the smell. Finally, the third instance introduces

a long parameter list before the extraction. In Chapter 5, we propose a catalog of eight

types of composite refactoring, which are formed by distinct refactoring types. We cluster

refactoring operations by considering the source or target code elements. In other words,

our scripts identify sequences of single refactoring operations to compose or decompose a

1https://refactoring.com/catalog

https://refactoring.com/catalog

2.5. Other Studies on Refactoring 30

source code element, regardless of the presence of a code smell. In fact, there are several

reasons to refactor a given source code element, which do not necessarily involve smell

removal [75, 86]. We rely on refactoring graphs to document and visualize instances of

the composites in relevant software systems.

Tsantalis et. al. [96] also present a brief discussion regards composites. The authors

introduce a new version of RefactoringMiner, which detects Extract Class—also defined in

Fowler’s catalog [35, 36]. According to the authors, composite refactorings “are composed

of basic ones”. Therefore, Extract Class matches this concept, since it comprises a set of

Move Method and Move Field operations aiming to generate a new class. In our catalog

(Chapter 5), Class Decomposition can include a set of move operations to a new class or

existing one. However, the focus refers to the decomposition of the source class.

2.5 Other Studies on Refactoring

Hora et. al. [49] analyze untracked changes during software development. The

authors show that refactorings invalidate several tracking strategies to evaluate system

evolution. As in this thesis, they represent evolutionary changes as graphs. In this case,

each node refers to a class or a method, and the edges indicate tracked changes (i.e.,

entities that keep their names after a modification) and untracked changes (i.e., entities

that change their names after a refactoring). That is, a graph represents traceable changes

or alterations that split the entity’s history. The results point up to 21% of the changes

at the method level and up to 15% at the class level are untraceable. By contrast, in

Chapter 3, the goal is to investigate refactorings performed over long time windows; we

do not concentrate on tracked modifications on source code.

Meananeatra [66] also reports changes during software evolution as graphs. How-

ever, the study concentrates on refactoring sequences to remove long methods. The author

proposes an approach based on two main criteria to detect an optimal set of refactorings.

An optimal refactoring sequence centers on four metrics: number of removed bad smells,

size of the refactoring sequence, number of the affected code elements, and the maintain-

ability value (i.e., analyzability, changeability, stability, and testability). The technique

represents candidate refactoring sequences as graphs. In this case, a graph contains a

root node representing the original method version with smells. Each new node denotes

a new method version after a refactoring operation. Similar to refactoring graphs, the

edges refer to refactorings. By contrast, the nodes represent the same method before and

after the changes. Each path in the graph is a candidate refactoring sequence, which can

meet the selection criteria. Thus, the study does not focus on real refactorings over time.

2.6. Final Remarks 31

Instead, the graph model represents steps to decompose a long method.

Finally, we reinforce findings from a recent study that points out a significant

rate of multiple extractions to decompose methods in a single commit [48]. The authors

show that Extract Method operations are frequently performed by developers, who cre-

ate methods for distinct purposes, such as testing, validation, and setup. However, the

study does not document a catalog of composite refactorings. Its goal is to characterize

method extractions, for example, their content, size, and degree. Similarly, in our study

described in Chapter 5, Method Decomposition and Method Composition—composites formed

by Extract Method and Extract and Move Method operations—are among the top-3 most fre-

quent composites. In the study in the wild (Section 5.6), for example, we detected 1,265

occurrences. Among them, 275 composites (21.7%) involving extractions are performed

over multiple commits.

2.6 Final Remarks

In this chapter, we present background information and work related to the major

themes of this thesis. We started by describing RefDiff, the tool used to detect refac-

toring operations. Specifically, we introduced a brief discussion regarding the employed

refactorings and main characteristics of the tool. Then, we discussed two field studies

involving batches and composite refactorings by highlighting their differences with refac-

toring graphs. Finally, we also mentioned other works related to this thesis content, such

as software evolution, catalogs of refactoring, and software comprehension.

Overall, we show the pertinence of studying refactorings performed over time. We

do not cover the whole scenario by concentrating on independent operations. Refactoring

performed over time may affect algorithms, tools, approaches, and maintenance tasks.

There are investigations on sets of refactoring operations, aiming to better understand new

perspectives of refactoring. However, to the best of our knowledge, refactorings performed

over a long time are not deeply investigated by the literature. It is also possible to notice

the need for approaches and abstractions to track, understand, visualize and document

refactoring operations in such scenarios.

32

Chapter 3

Defining and Characterizing

Refactoring Graphs

In this chapter, we introduce the formal definition of refactoring graphs by defin-

ing the graph elements and formalizing the steps to build them. We also describe the

results of a exploratory study, which intends to understand, characterize, and compute

the frequency of the proposed abstraction.

This chapter is organized as follows. Section 3.1 introduces the definition of refac-

toring graphs. Section 3.2 presents a quantitative study. In this case, we extracted graphs

for 20 well-known and popular open-source Java and JavaScript projects, investigating

six characteristics: size, number of commits, time span, homogeneity, ownership, and pat-

terns. Among the main findings, we observed that most refactoring subgraphs are small.

However, we also notice subgraphs describing large refactoring operations. Therefore, we

also performed a qualitative analysis, which is described in Section 3.3. Specifically, we

contacted the authors of large refactoring subgraphs, asking for the motivations behind

their operations. We discuss the key applications and implications in Section 3.4, while

Section 3.5 states threats to validity. Lastly, we conclude this chapter in Section 3.6.

3.1 Definition and Examples

3.1.1 Overview

A refactoring graph RG is a set of disconnected subgraphs G′ = (V ′, E ′). Each G′ is

named a refactoring subgraph, with a set of vertices V ′ and a set of directed edges E ′. The

history of a software system includes a set of refactoring subgraphs. In refactoring (sub)-

graphs, the vertices are the full signatures of methods or functions. For instance, in Java

3.1. Definition and Examples 33

projects, we labeled a method m() in class Foo and package util as util.Foo#m(). Since

Java is a strongly typed programming language, the signature also includes the type of the

parameters. For example, we label the same method m as util.Foo#m(String) wherever

it requires a string type parameter. In JavaScript graphs, this procedure is not practical

since it is an untyped language. Thus, we labeled the vertices utilizing the file name. For

example, util.Bar.js.C#f1 represents a function f1 in class C, file Bar.js, and directory

util. Finally, the edges indicate the refactoring type (e.g., move method) and they also

include meta-data about the operation (e.g., author name and date).

Figure 3.1: Refactoring subgraph produced by only one developer

package util;
class Foo{

m1(){…}
}

EXT
RAC

T

EXTRACT

EXTRACT

package util;
class Foo{

x(){…}
}

package util;
class Foo{

y(){…}
}

package util;
class Foo{

z(){…}
}

Figure 3.2: Refactoring subgraph over time

Developer D1

package util;
class Foo{

m2(){…}
}

EXTRA
CT

EXTRACT

package util;
class Foo{

a(){…}
}

package util;
class Foo{

b(){…}
}

package util;
class Foo{

c(){…}
}

RE
NA
ME

RE
NA
ME

Developer D2

3.1. Definition and Examples 34

Figure 3.1 shows an example of a refactoring graph. A developer extracted three

methods from m1(), which are named x(), y(), and z(). The edges refer to the refactoring

operation. It is worth noting that a refactoring graph can include refactorings performed

by multiple developers. For instance, Figure 3.2 illustrates a second example, where a

developer D1 extracted two methods from m2(), which are named a() and b(). Then,

a second developer D2 renamed b() to c(). After that, a reviewer might have suggested

to keep the original name. Thus, the developer undid the latest refactoring, renaming

c() to b() again. In this case, the graph contains refactorings performed by two authors.

Besides, a cycle is created when the developer reverts the method to the original name.

As presented in Figure 3.3, in the case of Java, we center our study on eight distinct

refactorings at the method level. Rename and move are the most trivial operations since

they involve just changing the method’s signature. Extract operations generate new

methods in the same class (i.e., they create a new node in our subgraphs). It is also

possible to extract a method m() or multiple methods mi from a single method m1().

Furthermore, as illustrated in Figure 3.3, it is possible to extract m() from multiple

methods mi. In this case, the extracted code is duplicated in each method mi. Inline

method is a dual operation, involving the removal of trivial elements and replacement of

the respective calls by their content. As in the case of extract, we can inline a method

m() in multiple methods mi. We also studied a refactoring called extract and move that

extracts a method to another class. Finally, inheritance-based refactorings comprise the

movement of one or more methods to supertypes or subtypes (i.e., pull up and push down).

For example, a pull up moves methods from subclasses to a superclass.

Figure 3.3: Example of refactoring subgraphs (Java)

RENAME util.Foo#m1() util.Foo#m2()

MOVE util.Foo#m1() util.Bar#m1()

MOVE AND
RENAME

util.Foo#m1() util.Bar#m2()

PULL UP

util.SubFooi#m1()

util.SubFoo1#m1()

util.SubFoo2#m1() util.SuperFoo#m1()

PUSH DOWN

util.SubFooi#m1()

util.SubFoo1#m1()

util.SubFoo2#m1()util.SuperFoo#m1()

EXTRACT

util.Foo#mi()

util.Foo#m1()

util.Foo#m2() util.Foo#m()

SubgraphRefactoring

INLINE

util.Bari#m3()

util.Bar1#m1()

util.Bar2#m2()util.Foo#m()

EXTRACT
AND MOVE

util.Fooi#mi()

util.Foo1#m1()

util.Foo2#m2() util.Bar#m()

SubgraphRefactoring

Similar refactorings apply to functions in JavaScript. As shown in Figure 3.4, in

JavaScript, there are also internal operations, i.e., refactorings performed in a single file.

3.1. Definition and Examples 35

Figure 3.4: Example of refactoring subgraphs (JavaScript)

INLINE

util.Foo.js.Ei#fi

util.Foo.js.E1#f1
util.Foo.js.E2#f2util.Foo.js#f

EXTRACT
AND MOVE

util.Foo.js.Ei#fi

util.Foo.js.E1#f1

util.Foo.js.E2#f2 util.Foo.js.E#f

SubgraphRefactoring

RENAME util.Foo.js#f1 util.Foo.js#f2

MOVE util.Foo.js#f1 util.Bar.js#f1

MOVE AND
RENAME util.Foo.js#f1 util.Bar.js#f2

INTERNAL
MOVE

util.Foo.js.E1#f1 util.Foo.js.E2#f1

INTERNAL
MOVE AND
RENAME

util.Foo.js.E1#f1 util.Foo.js.E2#f2

EXTRACT

util.Foo.js#fi

util.Foo.js#f1

util.Foo.js#f2 util.Foo.js#f

SubgraphRefactoring

3.1.2 Definition

Suppose a software project with a history of Commits. Using a refactoring detec-

tion tool, we first iterate over Commits to identify a set of Refactorings, such that:

Refactorings = {ref1, ref2, ref3. . . refn}

Each refactoring ref is defined by a tuple:

ref = (source, target, refType)

Specifically, for each ref, source represents a method before applying the refactoring

ref, target represents a method created by performing ref or an existing method impacted

by ref,1 and refType represents the refactoring type associated with ref such that: refType

∈ {rename,move,move rename, inline, extract, extract move, push down, pull up,

internal move, internal rename move}.
Refactorings were performed over a set of Methods.2 Each meth ∈ Methods in-

cludes information about the usual container structure, such that:

meth = (src, pkg, type, sig)

1For example, for Inline Method operations, the targets are existing methods, which receive the
content of the Inlined Method.

2It is also straightforward to extend our model to support other code elements, such as packages and
classes.

3.1. Definition and Examples 36

meth is a unique identifier referring to the localization of a method at a commit, before

or after a refactoring operation, respectively. The identifier includes source folder (src),

package (pkg), and the type declaration that the method belongs to (type), followed by the

method signature (sig). Figure 3.5 shows an example, in which meth = (src, com.example,

Foo, m(String)). In the case of nested code elements, all types in the hierarchy are part

of the identifier. For example, in Figure 3.5, if method m(String) is located in an inner

class Bar, both types are part of the identifier (i.e, meth = (src, com.example, Foo.Bar,

m(String)). The same applies to a prototype-based language, such as JavaScript, in which

nested elements compose the complete path of a code element.

Figure 3.5: Example of a method structure in Java

Source folder

Package

Type

Method

In this context, the triples (source, target, refType) result in a refactoring graph

RG, which includes a set of vertices V and a set of directed edges E, such that:

V = {meth ∈ Methods | {∃ (meth, ,) ∈ Refactorings} or {∃ (, meth,) ∈ Refactorings}

E ={(source, target) ∈ Methods x Methods | ∃(source, target,) ∈ Refactorings}

In fact, a refactoring graph RG is a set of disconnected subgraphs G. Figure 3.6

shows as example a refactoring graph RG that is formed by three subgraphs, G1, G2,

and G3. Subgraph G1 has four methods—m1, m2, m3, and m4—connected by three

refactorings. Specifically, there are two Extract Method operations, whose result is a new

method m3. Then, m3 was renamed to m4. In this case, G1 is a disconnected subgraph

because there are no other refactorings (i.e, edges) in subgraphs G2 and G3 that “connect”

to G1’s methods. Subgraph G2 represents an example of Inline Method operations, which

move the body of a trivial method m5 to three existing methods (m6, m7, and m8).

All methods represented in G2 are not involved in other refactoring operations over the

commit’s history. Finally, subgraph G3 represents a scenario where a developer performed

two subsequent Rename Method operations.

The algorithm to build a refactoring graph has four main steps and it requires as

input a list of the refactorings performed in the commits of a given system. First, for

each refactoring, the algorithm identifies the triples (source, target, refType), i.e., the two

methods involved and the refactoring type. Then, it creates two vertices, representing the

elements before and after the refactoring operation. In the third step, it creates a directed

edge representing this refactoring. The edges are labeled with refactoring’s name and with

3.2. Quantitative Study 37

information about the refactoring operation. The final output consists of a refactoring

graph, with its subgraphs.

Figure 3.6: Example of refactoring graph (RG) formed by three subgraphs (G1, G2, G3)

m1

m2

m3 m4

Subgraph G1

RENAME (e3)

EXTRACT (e1)

Subgraph G2

INLINE (e5)

EXTRACT (e2)

INLINE (e4)

INLINE (e6)

m5

m6

m7

m8

RENAME (e7) RENAME (e8)
m9 m10 m11

Subgraph G3

V = {m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11}
E = {e1, e2, e3, e4, e5, e6, e7, e8}

3.2 Quantitative Study

In this study, our goal is to quantitatively analyze refactoring in multiple pro-

gramming languages with the purpose of understanding and characterizing refactoring

activities performed over time. The context of the study consists of approximately 1.5K

refactoring subgraphs from 20 Java and JavaScript open-source projects, ten in each lan-

guage. . Since refactoring graphs are a novel abstraction, we see value in starting by

shedding light on several of their properties. In other words, before performing a quali-

tative study with developers (Section 3.3), we found it important to mine the maximum

amount of data and information about such graphs. Specifically, we address the following

research questions, aiming to investigate seven properties: refactorings over time, size,

number of commits, time span, homogeneity, ownership, and patterns.3

3We also designed and implemented a web application to easily visualize the results https:

//refactoring-graph.github.io

https://refactoring-graph.github.io
https://refactoring-graph.github.io

3.2. Quantitative Study 38

• (RQ0) How many refactoring operations generate subgraphs over time? Most studies

concentrate on refactorings performed in a single commit [5, 32, 51, 86]. For this

reason, the rationale of this preliminary research question is to assess the prevalence

of the key practice we investigate in our study, i.e., refactorings that are spread over

multiple commits.

• (RQ1) What is the size of refactoring subgraphs? We are interested in investigating

the size of refactoring subgraphs, in terms of number of vertices and edges. This

investigation may provide insights about the impact of refactorings in the design/ar-

chitecture of the studied systems.

• (RQ2) How many commits are represented in refactoring subgraphs? Each commit

can contribute to one or more refactoring in a refactoring subgraph. Therefore, our

objective is to investigate how refactoring subgraphs increase over time. This inves-

tigation complements the perspective of previous studies, which rely on refactoring

operations detected in a single commit or in a short time interval [70, 89].

• (RQ3) What is the time span of refactoring subgraphs? We investigate the lifetime

of subgraphs, i.e., the interval between the first and the latest refactoring operation

in a subgraph. For example, this investigation might also provide insights about

large and long-running changes in the design/architecture of the studied systems.

• (RQ4) Which are the most common refactoring operations in refactoring subgraphs?

In this RQ, we discuss the most recurring refactoring types that occur over time,

complementing the panorama of studies that report the frequency of single-commit

operations [75, 86, 87, 96]. We also analyze the homogeneity of refactoring sub-

graphs. In other words, we investigate the frequency of subgraphs formed by the

same or distinct refactoring types.

• (RQ5) Are refactoring subgraphs created by the same or by multiple developers? The

rationale of this research question is to investigate whether refactoring operations

over time are performed by distinct developers. That is, we aim to assess whether

refactoring operations over time are concentrated on single developers or spread over

multiple ones.

• (RQ6) What are the most common refactoring subgraphs? This research question

provides an overview of recurrent graphs in distinct projects, i.e., refactoring graph

patterns that occur frequently in our dataset.

3.2. Quantitative Study 39

3.2.1 Study Design

Selecting Projects

In this chapter, we analyze the characteristics and frequency of refactoring subgraphs in

popular Java and JavaScript systems. We used the following criteria for selecting the

projects for each programming language. First, the projects should be among the top-100

GitHub repositories in terms of stars, since stars is a key metric to reveal the popularity

of repositories [15, 88]. Second, the project should have more than 1K commits (in

order to remove recent systems with a short history of refactoring activity). Finally, the

project should be a software system. Thus, we removed, for example, code samples (such

as iluwatar/java-design-patterns)4 and JavaScript style guides (such as airbnb/javascript).5

Table 3.1 describes the selected projects, including basic information, such as number of

stars, commits, files, contributors, and short description. These projects cover distinct

domains, including web development systems and media processing libraries, for example.

Table 3.1: Selected projects (Java and JavaScript)

Project Stars Com. Cont. Files Bran. Desc.

Elasticsearch 44,489 48,313 1,273 11,770 master Search engine
RxJava 40,622 5,581 237 1,666 3.x Event-based lib.
Square Okhttp 34,484 4,273 189 167 master HTTP client
Square Retrofit 33,801 1,756 129 241 master HTTP client
Spring Framework 32,582 19,752 396 7,203 master Web framework
Apache Dubbo 29,353 3,639 249 1,743 master RPC framework
MPAndroidChart 28,647 2,018 66 220 master Chart lib.
Glide 27,289 2,416 102 647 master Image lib.
Lottie Android 26,952 1,139 76 198 master Animation lib.
Facebook Fresco 15,870 2,158 170 985 master Image lib.

Vue 163,721 3,099 293 432 dev UI framework
React 148,441 13,231 1,383 1,378 master UI library
Parcel 35,651 1,891 233 1,618 v2 Files bundler
Hexo 30,371 3,259 145 272 master Blog framework
Leaflet 27,805 6,843 643 141 master Maps lib.
Quill 26,386 5,199 120 89 develop Text editor
Request 24,553 2,270 286 74 master HTTP client
Nylas Mail 24,529 6,116 89 120 master Mail app
Select2 24,415 2,607 442 230 develop Selector lib.
Carbon 24,061 1,411 125 92 master Screenshot app

4https://github.com/iluwatar/java-design-patterns
5https://github.com/airbnb/javascript

https://github.com/iluwatar/java-design-patterns
https://github.com/airbnb/javascript

3.2. Quantitative Study 40

Detecting Refactoring Operations

As mentioned in Chapter 2, we use RefDiff [85, 87] to detect the refactoring operations

represented in refactoring graphs. RefDiff identifies refactorings between two versions of

a git-based project. In our study, we focus on well-known refactoring operations detected

by RefDiff at the method or function level, as presented in Figures 3.3 and 3.4 (Section

3.1.1). RefDiff works by comparing each commit with its previous version in history.

To avoid analyzing commits from temporary branches, we focus on the main branch

evolution. Particularly, we use the command git log –first-parent to get the list of commits

of each project.6 Additionally, we remove refactorings in packages that are not part

of the core system. For Java projects, we remove refactorings from packages with the

keywords test(s), example(s), and sample(s). In JavaScript, we also filter other keywords.

For instance, we discarded refactorings from the package dist, since it is frequently used

to store source code for distribution. Other cases are specific from a single JavaScript

system. For example, in Vue, we remove refactorings from packages/vue-server-renderer

since the documentation mentions: “This package is auto-generated”.7

Building Refactoring Graphs

We identify refactoring subgraphs over time in 20 systems. Table 3.2 presents the fre-

quency of refactoring subgraphs for each Java project, and Table 3.3 presents the results

for JavaScript. Considering both languages, we detect a total of 11,341 refactoring sub-

graphs. In the case of Java, we detect 9,200 subgraphs, whereas 2,141 for JavaScript.

Table 3.2: Frequency of refactoring subgraphs (Java)

Project
Refactoring Subgraphs

All commit = 1 % commit ≥ 2 %

Elasticsearch 2,150 1,971 91.7 179 8.3
RxJava 1,120 1,034 92.3 86 7.7
Square Okhttp 650 563 86.6 87 13.4
Square Retrofit 182 148 81.3 34 18.7
Spring Framework 3,206 2,705 84.4 501 15.6
Apache Dubbo 486 452 93.0 34 7.0
MPAndroidChart 453 380 83.9 73 16.1
Glide 441 296 67.1 145 32.9
Lottie Android 197 174 88.3 23 11.7
Facebook Fresco 315 279 88.6 36 11.4

All 9,200 8,002 87.0 1,198 13.0

6https://git-scm.com/docs/git-log#Documentation/git-log.txt---first-parent
7https://github.com/vuejs/vue/tree/dev/packages/vue-server-renderer

https://git-scm.com/docs/git-log#Documentation/git-log.txt---first-parent
https://github.com/vuejs/vue/tree/dev/packages/vue-server-renderer

3.2. Quantitative Study 41

Table 3.3: Frequency of refactoring subgraphs (JavaScript)

Project
Refactoring Subgraphs

All commit = 1 % commit ≥ 2 %

Vue 281 218 77.6 63 22.4
React 843 737 87.4 106 12.6
Parcel 108 96 88.9 12 11.1
Hexo 196 168 85.7 28 14.3
Leaflet 268 206 76.9 62 23.1
Quill 217 197 90.8 20 9.2
Request 59 43 72.9 16 27.1
Nylas Mail 72 67 93.1 5 6.9
Select2 69 63 91.3 6 8.7
Carbon 28 19 67.9 9 32.1

All 2,141 1,814 84.7 327 15.3

Spring Framework has the highest number of subgraphs (3,206), while Square Retrofit

has the lowest number (182). Overall, 87% of the refactoring subgraphs comprise opera-

tions performed in a single commit. This ratio varies from 67.1% (Glide) to 93% (Apache

Dubbo). The results follow a similar trend in JavaScript systems. The percentage of

single-commit subgraphs ranges from 67.9% (Carbon) to 93.1% (Nylas Mail).

From RQ1 to RQ5, we assess 1,525 subgraphs with number of commits ≥ 2, because they

are the ones that represent refactorings over time.

Mining Frequent Graphs

In our last research question (RQ6), we investigate frequent graphs, i.e., graph patterns

that occur frequently in our dataset. For this analysis, we use GSpan, a well-known

algorithm that identifies subgraphs whose incidence is greater than a given support [61,

102]. Figure 3.7 shows a simple example of graph pattern (gray nodes and edges). For

instance, suppose that GSpan reports the operation move method followed by a rename

method as a pattern that occurs repeatedly in our dataset. As we can notice, G1 contains

this pattern (grey vertices), which refers to two distinct commits over time.

Figure 3.7: Example of over time graph patterns

EXT
RAC

T

EXTRACT

G1
MOVE RENAME

G2 illustrates a second example, a pattern with three extract method operations,

as shown in Figure 3.8. However, in this case, there are two possible situations: (i) the

3.2. Quantitative Study 42

three extract operations were performed in a single commit, or (ii) the extract operations

were performed in multiple commits over time.

Figure 3.8: Example of possibly atomic graph patterns

RENAME
EX
TR
AC

T

EXTRACT
EXTRACT

G2

Therefore, there are two categories of refactoring patterns: possibly atomic refac-

toring patterns and over time refactoring patterns. Over time patterns represent frequent

refactorings performed in distinct commits (e.g., G1). In contrast, possibly atomic pat-

terns can be detected in single or multiple commits. In other words, we cannot safely

infer they include refactorings over time (e.g., G2).8 Besides that, GSpan can report more

than one pattern in the same subgraph. For instance, the algorithm can identify a pattern

with two extract operations and a second pattern with three extract operations in G2.

Finally, it is also worth noting that refactorings graphs might have cycles, as in the

example of Figure 3.9. In this subgraph, the extract refactorings were performed in the

same commit. After that, in a second commit, one of the extract was reverted using an

inline operation. If we do not take precaution, GSpan might detect the following pattern

in this graph: inline → extract (assuming this pattern also happens in other subgraphs).

However, this is a misleading pattern, since the inline happened before the extract. As

the reader might have already concluded, misleading patterns are only possible when at

least one edge is part of a cycle. For this reason, in order to answer RQ6, we implemented

a script to identify and remove subgraphs with cycles from our dataset. As a result, we

discarded 289 subgraphs in Java (3%) and 47 subgraphs in JavaScript (2%).

Figure 3.9: Example of an misleading refactoring graph pattern (inline → extract)

EXTRACT

EX
TR
AC
T

INLIN
E

8GSpan output does not include information about the edges, such as commit or date. The algorithm
only reports the occurrence of a pattern in a set of subgraphs. As a consequence, for graph patterns
involving a single element (i.e., refactoring from the same source or refactoring to the same target), it is
not possible to infer they include refactorings over time.

3.2. Quantitative Study 43

Since patterns can be detected in any number of commits (i.e., even in a single

commit), in RQ6, we do not separate the dataset by the number of commits. As a result,

in this RQ, we assess 8,911 subgraphs in Java,9 and 2,094 subgraphs in JavaScript.10 We

fixed support = 13 (Java) and support = 8 (JavaScript). We set these thresholds due

to execution time that would allow us to classify the retrieved graphs as patterns. The

threshold for JavaScript is lower because the number of graphs we mined for this language

is also lower.

Overview of Data Collection and Analysis

Table 3.4 presents an overview of the dataset we use to address the research questions.

RQ0 provides an introductory analysis, considering the frequency of multiple-commits

operations in the subgraphs over time. From RQ1 to RQ5, we work on the same sample,

which includes 1,525 refactoring subgraphs over time (1,198 Java and 327 JavaScript). In

the case of RQ6, we consider all subgraphs without cycles to investigate refactoring graph

patterns.

Table 3.4: Numbers of the quantitative study

Description RQs All Java JS

All refactoring operations RQ0 15,945 13,162 2,783
All refactoring subgraphs RQ0 11,341 9,200 2,141
Ref. subgraphs (commit ≥ 2) RQ1 to RQ5 1,525 1,198 327
Ref. subgraphs without cycles RQ6 11,005 8,911 2,094

3.2.2 Results

(RQ0) How Many Refactoring Operations Generate Subgraphs over Time?

In this first research question, we provide an overview of the refactoring operations in our

sample. Specifically, we discuss how many refactorings result in subgraphs over time. As

presented in Table 3.5, for Java, 29.3% of the operations are part of a refactoring subgraph

over time (3,853 occurrences).

In the case of JavaScript, this rate is 32.4% (902 occurrences), as shown in Table

3.6. Interestingly, in three projects, more than 50% of the detected refactorings correspond

to edges of subgraphs overtime: Carbon (53.7%), Request (60.2%), and Glide (56%).

9All 9,200 subgraphs presented in Table 3.2 minus the 289 subgraphs with cycles.
10All 2,141 subgraphs presented in Table 3.3 minus the 47 subgraphs with cycles.

3.2. Quantitative Study 44

Table 3.5: Frequency of refactoring operations in subgraphs (Java)

Project
Refactoring Operations

All Atomic % Over time %

Elasticsearch 2,969 2,394 80.6 575 19.4
RxJava 1,421 1,235 86.9 186 13.1
Square Okhttp 1,147 694 60.5 453 39.5
Square Retrofit 249 164 65.9 85 34.1
Spring Framework 4,640 3,071 66.2 1,569 33.8
Apache Dubbo 596 489 82.0 107 18.0
MPAndroidChart 720 423 58.8 297 41.3
Glide 734 323 44.0 411 56.0
Lottie Android 288 209 72.6 79 27.4
Facebook Fresco 398 307 77.1 91 22.9

All 13,162 9,309 70.7 3,853 29.3

Table 3.6: Frequency of refactoring operations in subgraphs (JavaScript)

Project
Refactoring Subgraphs

All Atomic % Over time %

Vue 394 221 56.1 173 43.9
React 1,029 759 73.8 270 26.2
Parcel 130 99 76.2 31 23.8
Hexo 264 178 67.4 86 32.6
Leaflet 376 216 57.4 160 42.6
Quill 255 206 80.8 49 19.2
Request 108 43 39.8 65 60.2
Nylas Mail 88 73 83.0 15 17.0
Select2 98 67 68.4 31 31.6
Carbon 41 19 46.3 22 53.7

All 2,783 1,881 67.6 902 32.4

Summary of RQ0: In both languages, Java and JavaScript, about 30% of the refactoring

operations are part of a refactoring subgraph over time.

(RQ1) What is the Size of Refactoring Subgraphs?

As presented in Figure 3.10, in Java, most refactoring subgraphs have three vertices (630

occurrences, 53%). The other recurrent cases comprise subgraphs with two (19%) or

four vertices (13%). Square Okhttp holds the largest subgraph regarding the number of

vertices (57), which are most related to inline operations. Concerning the number of

edges, most subgraphs have two (67%) or three edges (16%). MPAndroidChart has the

largest subgraph in terms of edges. It has 61 edges, most representing extract and move

operations. Therefore, most subgraphs contain few methods (vertices) and refactoring

operations (edges).

3.2. Quantitative Study 45

Figure 3.10: Size of refactoring subgraphs (Java)

10%

5%

13%

53%

19%

6+

5

4

3

2

0 100 200 300 400 500 600 700 800
Occurrences

Ve
rt

ic
es

(a) Number of vertices

11%

6%

19%

64%

5+

4

3

2

0 100 200 300 400 500 600 700 800

Occurrences

E
dg

es

(b) Number of edges

Figure 3.11 shows a real-world example of a refactoring subgraph from MPAndroid-

Chart, which includes three distinct refactoring operations. In the first commit C1, a de-

veloper renamed method drawYLegend() to drawY Labels().11 In the subsequent commit

performed 13 days later, the same developer extracted a new method from drawY Labels()

at commit C2.12 Two days after the second operation, in commit C3, he made new ex-

tractions from drawY Labels() to another class, creating a subgraph with five vertices and

four edges.13

Figure 3.11: Example of a refactoring subgraph from MPAndroidChart (Java)

RENAME

Commit	C1 Commit	C2 Commit	C3

EXTRACT
EXT

RAC
T

AND
	MO

VE

EXTRACT
AND	MOVE

In the case of JavaScript, most subgraphs also have three vertices (57%), as shown

in Figure 3.12. Other common cases refer to subgraphs with two (11%) or four vertices

(18%). Regarding the number of edges, the subgraphs also are small, 92% of them involve

up to four edges.

11https://github.com/PhilJay/MPAndroidChart/commit/13104b26
12https://github.com/PhilJay/MPAndroidChart/commit/063c4bb0
13https://github.com/PhilJay/MPAndroidChart/commit/d930ac23

https://github.com/PhilJay/MPAndroidChart/commit/13104b26
https://github.com/PhilJay/MPAndroidChart/commit/063c4bb0
https://github.com/PhilJay/MPAndroidChart/commit/d930ac23

3.2. Quantitative Study 46

Figure 3.12: Size of refactoring subgraphs (JavaScript)

11%

57%

18%

6%

8%6+

5

4

3

2

0 40 80 120 160 200 240
Occurrences

Ve
rt

ic
es

(a) Number of vertices

67%

18%

7%

8%5+

4

3

2

0 40 80 120 160 200 240
Occurrences

E
dg

es

(b) Number of edges

Figure 3.13 presents an example of a refactoring subgraph from Quill, which in-

cludes five edges and three distinct refactoring operations. In commit C1, a developer

renamed function formatCursor to format.14 Seven months later, in commit C2, the

same developer made four extract operations to function isEnable, aiming the removal

of a single duplicated line.15

Figure 3.13: Example of a refactoring subgraph from Quill (JavaScript)

RENAME

EXTRACT

EXTRACT

EXT
RAC

T

EXTR
ACT	

AND	M
OVE

Commit	C1 Commit	C2

14https://github.com/quilljs/quill/commit/aee9b867
15https://github.com/quilljs/quill/commit/e1d76d9f

https://github.com/quilljs/quill/commit/aee9b867
https://github.com/quilljs/quill/commit/e1d76d9f

3.2. Quantitative Study 47

Summary of RQ1: In both languages, most refactoring subgraphs are small. Among

1,198 Java samples, most cases comprise subgraphs with the number of vertices ranging

from two to four (85%) and two or three edges (83%). JavaScript reveals a similar

result, most refactoring subgraphs have up to four vertices (86%) and three edges (85%).

However, the presence of large subgraphs is not negligible.

(RQ2) How Many Commits are Represented in Refactoring Subgraphs?

In this second question, we investigate the number of commits per subgraph. As presented

in Figure 3.14, most cases include subgraphs with two or three commits. In Java, 95%

of subgraphs (1,135 occurrences) are created from up to three commits. The largest

subgraph in terms of commits is again from Square Okhttp (18 commits). Similarly, in

JavaScript, 93% of subgraphs (304 occurrences) also comprise two or three commits.

Figure 3.14: Number of commits by refactoring subgraph

2%

3%

18%

77%

5+

4

3

2

0 100 200 300 400 500 600 700 800 900 1000

Occurrences

C
om

m
its

(a) Java

78%

15%

4%

3%5+

4

3

2

0 30 60 90 120 150 180 210 240 270 300
Occurrences

C
om

m
its

(b) JavaScript

Figure 3.15 shows an example from Elasticsearh. In commit C1, a developer moved

two methods from class SocketSelector to NioSelector.16 After approximately three

months, in commit C2, a second developer extracted duplicated code from three meth-

ods to a new method named handleTask(Runnable).17 Among the source methods, two

methods are the ones moved early. As a consequence, these two commits create a refac-

toring subgraph with six vertices and five edges.
16https://github.com/elastic/elasticsearch/commit/9ee492a3f07
17https://github.com/elastic/elasticsearch/commit/11fe52ad767

https://github.com/elastic/elasticsearch/commit/9ee492a3f07
https://github.com/elastic/elasticsearch/commit/11fe52ad767

3.2. Quantitative Study 48

Figure 3.15: Example of a refactoring subgraph from Elasticsearch (Java)

MOVE

MOVE
EXTRACT

EX
TR
AC

T
EXTRACT

Commit	C1 Commit	C2

Summary of RQ2: Most refactoring subgraphs are created from few commits, e.g., 95%

of Java subgraphs and 93% of JavaScript subgraphs are created from at most three

commits.

(RQ3) What is the Time Span of Refactoring Subgraphs?

To assess interval, we compute the number of days between the most recent and the

oldest operation in a subgraph. Figure 3.16 presents the results for Java. Considering the

median of the distributions, the youngest subgraphs are found in Lottie Android and RxJava,

which are 3 and 3.4 days, respectively. On the other side, the oldest subgraphs are found

in Glide (489.8 days), Spring Framework (121.9), and Fresco (167.8). The other systems

have subgraphs with time span between 45.4 (Elasticsearch) and 84 days (MPAndroidChart).

Regarding the maturity of the target systems, the youngest project is Lottie Android (3

years) while the oldest one is Elasticsearch (9 years).

Figure 3.16: Timespan of the refactoring subgraphs (Java)

45.4
3.4

83.4 76.7 121.9 76.4 84
489.8

3

167.8

1

30
300

2000

Elasticsearch RxJava Okhttp Retrofit Spring Dubbo MPAndroid Glide Lottie Fresco

D
ay

s
(lo

g)

Figure 3.17 presents the distribution of period in JavaScript. Considering the

median, the youngest subgraphs are from Carbon and Nylas Mail, with approximately 25

days. In contrast, there are also older subgraphs. For instance, in Hexo, the median is

around four years. Thus, the time span of refactoring subgraphs also diverse in JavaScript.

Figure 3.18 shows an example of a subgraph describing refactorings performed in

few days on Spring Framework. In commit C1, a developer renamed method before(...) to

filterBefore(...).18 After six days, the same developer reverted the operation in commit

C2, renaming filterBefore(...) to the original name.19

18https://github.com/spring-projects/spring-framework/commit/794693525f
19https://github.com/spring-projects/spring-framework/commit/91e96d8084

https://github.com/spring-projects/spring-framework/commit/794693525f
https://github.com/spring-projects/spring-framework/commit/91e96d8084

3.2. Quantitative Study 49

Figure 3.17: Timespan of the refactoring subgraphs (JavaScript)

72 45 81.1

1439.5
568.6

59.5
212.3

25.1

412.5

25

1

30

300

2000

Vue React Parcel Hexo Leaflet Quill Request Nylas Select2 Carbon

D
ay

s
(lo

g)

Figure 3.18: Example of a refactoring subgraph from Spring Framework (Java)

RENAME Commit	C1

RENAME Commit	C2

Figure 3.19 presents a second example, a subgraph with more than one year in

Vue. The first operation occurs in August 2016, in commit C1, when a developer ex-

tracts a function from createElm.20 The same developer performs more three opera-

tions during 15 months, extracting functions createChildren,21 createComponent,22 and

isUnknownElement.23

Figure 3.19: Example of a refactoring subgraph from Vue (JavaScript)

Commit	C1					(August,	2016)

EX
TRA

CT

EXTRACT

EXTRA
CT

EXTRACT

Commit	C2					(Setember,	2016)

Commit	C3					(November,	2016)

Commit	C4					(November,	2017)

20https://github.com/vuejs/vue/commit/351aef3c
21https://github.com/vuejs/vue/commit/7a2c9867
22https://github.com/vuejs/vue/commit/de7764a3
23https://github.com/vuejs/vue/commit/df82aeb0

https://github.com/vuejs/vue/commit/351aef3c
https://github.com/vuejs/vue/commit/7a2c9867
https://github.com/vuejs/vue/commit/de7764a3
https://github.com/vuejs/vue/commit/df82aeb0

3.2. Quantitative Study 50

Summary of RQ3: The period captured by the refactoring subgraphs is diverse. While

some have few days, the majority of the subgraphs has weeks or even months. For

example, for approximately 60% of the refactoring subgraphs in both languages (Java

and JavaScript), the interval between the most recent and the oldest operation is more

than one month.

(RQ4) Which are the Most Common Refactorings in Refactoring Subgraphs?

Table 3.7 presents the most common refactorings in Java. Most cases include rename

(20%), move (18%), and extract and move method (17%). By constrast, we detected only

92 occurrences of move and rename operations. There are also few inheritance-based

refactorings, i.e., pull up (369 occurrences) and push down (148 occurrences).

Table 3.7: Frequency of refactoring operations (Java)

Refactoring Occurrences %

Rename 752 20
Move 677 18
Extract and move 673 17
Extract 653 17
Inline 489 13
Pull up 369 10
Push down 148 4
Move and rename 92 2

All 3,853 100

We also divided our sample of 1,198 subgraphs into two groups. The homogeneous

group includes subgraphs with a single refactoring operation. In contrast, the heteroge-

neous group comprises subgraphs with at least two distinct refactoring operations. As

presented in Table 3.8, around 28.9% of the subgraphs are homogeneous, while 71.1% are

heterogeneous.

Table 3.8: Homogeneous vs heterogeneous refactoring subgraphs (Java)

Project Homogeneous % Heterogeneous %

Elasticsearch 63 35.2 116 64.8
RxJava 45 52.3 41 47.7
Square Okhttp 22 25.3 65 74.7
Square Retrofit 12 35.3 22 64.7
Spring Framework 140 27.9 361 72.1
Apache Dubbo 8 23.5 26 76.5
MPAndroidChart 16 21.9 57 78.1
Glide 29 20.0 116 80.0
Lottie Android 5 21.7 18 78.3
Facebook Fresco 6 16.7 30 83.3

All 346 28.9 852 71.1

3.2. Quantitative Study 51

The results per system follow a similar tendency. Most of the projects have more

heterogeneous subgraphs than homogeneous ones; the sole exception is RxJava (52.3% vs

47.7%). In addition, as presented in Figure 3.20, heterogeneous subgraphs often include

two distinct refactoring types (60%); in contrast, 8% have three and only 3% have four

or more distinct refactoring types.

Figure 3.20: Number of distinct refactorings by subgraph (Java)

3%

8%

60%

29%

4+

3

2

1

0 100 200 300 400 500 600 700
Occurrences

R
ef

ac
to

rin
g

As shown in Table 3.9, in JavaScript, 76% of the refactorings refer to extract, move,

and rename operations. There are also 88 occurrences of internal move operations, that

is, the movement of nested functions into a single file. Among the 902 refactorings, 628

cases (69.6%) denote to heterogeneous subgraphs, which is the largest group, as presented

in Table 3.10. Besides that, as shown in Figure 3.21, heterogenous subgraphs frequently

include two distinct refactoring operations, following the same tendency of Java subgraphs.

Table 3.9: Frequency of refactoring operations (JavaScript)

Refactoring Occurrences %

Extract 238 26
Move 234 26
Rename 214 24
Internal move 88 10
Inline 53 6
Extract and move 29 3
Move and rename 36 4
Internal mode and rename 10 1

All 902 100

Figure 3.22 shows an example of a homogeneous subgraph from Facebook Fresco. In

this case, the subgraph represents four extract operations performed over time. First, in

commit C1, a developer extracted fetchDecodedImage(...) from two methods into class

ImageP ipeline.24 The next operations happened years later when a second developer

made two new extract operations in commits C225 and C326.

24https://github.com/facebook/fresco/commit/02ef6e0f
25https://github.com/facebook/fresco/commit/b76f56ef
26https://github.com/facebook/fresco/commit/017c007b

https://github.com/facebook/fresco/commit/02ef6e0f
https://github.com/facebook/fresco/commit/b76f56ef
https://github.com/facebook/fresco/commit/017c007b

3.2. Quantitative Study 52

Table 3.10: Homogeneous vs heterogeneous refactoring subgraphs (JavaScript)

Project Homogeneous % Heterogeneous %

Vue 21 33.3 42 66.7
React 44 41.5 62 58.5
Parcel 3 25.0 9 75.0
Hexo 4 14.3 24 85.7
Leaflet 27 43.5 35 56.5
Quill 3 15.0 17 85.0
Request 10 62.5 6 37.5
Nylas Mail 1 20.0 4 80.0
Select2 2 33.3 4 66.7
Carbon 3 33.3 6 66.7

All 118 36.1 209 63.9

Figure 3.21: Number of distinct refactorings by subgraph (JavaScript)

2%

9%

53%

36%

4+

3

2

1

0 40 80 120 160 200
Occurrences

R
ef

ac
to

rin
g

Figure 3.22: Example of a homogeneous refactoring subgraph from Facebook Fresco (Java)

EXTRACT

Commit	C2

EXTRACT EXTRACT

Commit	C1 Commit	C3

EXTR
ACT

As a second example, we present a heterogenous subgraph from Parcel in Figure

3.23. In this case, a single developer performed three distinct operations in nine months

by renaming function resolveModule to resolveAsset,27 moving it to another file,28 and

extracting function getLoadedAsset.29

Summary of RQ4: Most refactoring subgraphs are heterogeneous, e.g., 71.1% of Java

subgraphs and 63.9% of JavaScript subgraphs include more than one refactoring type.

27https://github.com/parcel-bundler/parcel/commit/38d4a830
28https://github.com/parcel-bundler/parcel/commit/e4cee192
29https://github.com/parcel-bundler/parcel/commit/dd3ea464

https://github.com/parcel-bundler/parcel/commit/38d4a830
https://github.com/parcel-bundler/parcel/commit/e4cee192
https://github.com/parcel-bundler/parcel/commit/dd3ea464

3.2. Quantitative Study 53

Figure 3.23: Example of a heterogenous refactoring subgraph from Parcel (JavaScript)

RENAME MOVE EXTRACT

Commit	C1 Commit	C2 Commit	C3

(RQ5) Are Refactoring Subgraphs Created by the Same or by Multiple

Developers?

In this question, we separate the refactoring subgraphs into two groups. The first group

includes subgraphs with refactoring operations performed by a single developer. The

second category is the opposite; it holds subgraphs by multiple developers. As presented

in Table 3.11, in Java, most subgraphs have a single author (61.4%). It is also possible

to notice a similar tendency in JavaScript, i.e., 203 subgraphs (62.1%) include refactoring

operations performed by a sole developer, as shown in Table 3.12.

Table 3.11: Developers by refactoring graphs (Java)

Project Single dev. % Multiple devs. %

Elasticsearch 67 37.4 112 62.6
RxJava 77 89.5 9 10.5
Square Okhttp 32 36.8 55 63.2
Square Retrofit 14 41.2 20 58.8
Spring Framework 309 61.7 192 38.3
Apache Dubbo 20 58.8 14 41.2
MPAndroidChart 70 95.9 3 4.1
Glide 125 86.2 20 13.8
Lottie Android 11 47.8 12 52.2
Facebook Fresco 11 30.6 25 69.4

All 736 61.4 462 38.6

Table 3.12: Developers by refactoring graphs (JavaScript)

Project Single dev. % Multiple devs. %

Vue 41 65.1 22 34.9
React 55 51.9 51 48.1
Parcel 9 75.0 3 25.0
Hexo 10 35.7 18 64.3
Leaflet 56 90.3 6 9.7
Quill 20 100.0 0 0.0
Request 4 25.0 12 75.0
Nylas Mail 1 20.0 4 80.0
Select2 3 50.0 3 50.0
Carbon 4 44.4 5 55.6

All 203 62.1 124 37.9

3.2. Quantitative Study 54

Figure 3.24 presents an example of a refactoring subgraph from Square Okhttp.

First, in commit C1, developer D1 renamed three methods from class OkHttpClient.30

Basically, the developer removed the prefix set from their names. After 10 months, a

second developer D2 removed duplicated code from these methods, extracting method

checkDuration(...).31 Then, after seven months, D2 moved this method to a new class

named Util, in commit C3.32 As a result, these two developers are responsible for a

refactoring subgraph with eight vertices and seven edges. Figure 3.25 shows an opposite

scenario, a subgraph from Facebook React, which was created by a single developer. After

performing five inline operations,33 the developer renamed a function, adding the prefix

deprecated.34

Figure 3.24: Example of a refactoring subgraph created by multiple developers in Square

Okhttp (Java)

RENAME

Commit	C1 Commit	C2

RENAME

RENAME

EXTRACT MOVE

EXTRACT

EX
TR
AC

T

Developer	D1 Developer	D2

Commit	C3

Figure 3.25: Example of a refactoring subgraph created by a single developer in Facebook

React (JavaScript)

IN
LI
NE

RENAME

Commit	C1 Commit	C2

INL
INE

INLINE
INLINEINLINE

30https://github.com/square/okhttp/commit/daf2ec6b9
31https://github.com/square/okhttp/commit/c5a26fefd
32https://github.com/square/okhttp/commit/a32b1044a
33https://github.com/facebook/react/commit/50988911
34https://github.com/facebook/react/commit/9fe10312

https://github.com/square/okhttp/commit/daf2ec6b9
https://github.com/square/okhttp/commit/c5a26fefd
https://github.com/square/okhttp/commit/a32b1044a
https://github.com/facebook/react/commit/50988911
https://github.com/facebook/react/commit/9fe10312

3.2. Quantitative Study 55

Summary of RQ5: Most refactoring subgraphs are created by a single developer, e.g.,

only 38.6% of Java subgraphs and 37.9% of JavaScript subgraphs have multiple devel-

opers.

(RQ6) What are the Most Common Refactoring Subgraphs?

In this last research question, we mine frequent refactoring patterns. Specifically, we

search for patterns that occur frequently in our dataset.

As presented in Table 3.13, in Java, we detect a total of 38 patterns usingGSpan [102].

Most cases refer to over time patterns (60.5%, 23 occurrences), i.e., patterns that happen

over multiple commits. In contrast, 15 patterns (39.5%) refer to possibly atomic patterns,

that is, they can happen in single or multiple commits.

Table 3.13: Refactoring patterns

Vertices
Java Patterns JavaScript Patterns

Over Time P. Atomic All Over Time P. Atomic All
3 23 10 33 11 3 14
4 0 4 4 0 1 1
5 0 1 1 0 0 0

All 23 15 38 11 4 15

Figure 3.26 shows the distribution of the 38 patterns by the number of distinct

projects and their support in Java. Interestingly, four patterns appear in all studied

systems. Furthermore, 75% of the patterns occur in up to eight projects, and support

values range from 14 to 153. In JavaScript, GSpan reports 15 patterns, 11 of then in the

over time category (73%). Figure 3.27 presents the distribution of the detected patterns.

The support median is 18, varying from 8 to 50.

Figure 3.26: Patterns distribution (Java)

6

2 7 8 10

Projects

(a) Distinct projects by pattern

27

14 19 39 153

Support (log scale)

(b) Support by pattern

In the remainder of the section, we provide an analysis of refactoring patterns con-

sidering their number of vertices. As shown in Table 3.13, this number ranges from three

to five vertices.

3.2. Quantitative Study 56

Figure 3.27: Patterns distribution (JavaScript)

7

3 5 8 10

Projects

(a) Distinct projects by pattern

18

8 14 18 25 50

Support

(b) Support by pattern

Refactoring graph patterns with three vertices: As we can observe in Table 3.13, in Java,

all over time patterns have three vertices. Figure 3.28 shows the top-5 over time patterns

in terms of support. Interestingly, the most recurrent patterns are homogeneous, that is,

they refer to successive rename operations (P1′, 153 occurrences) and move operations

(P2′, 65 occurrences). In fact, P1′ appears in all studied Java systems.

Figure 3.28: Top-5 over time graph patterns

RENAME RENAME

MOVE MOVE

RENAME MOVE

MOVE RENAME

RENAME EXTRACT

P1' 153

65

44

43

40

Over	Time	Graph	Patterns Support

P2'

P3'

P4'

P5'

(a) Java

MOVE MOVE

RENAME RENAME

RENAME MOVE

MOVE RENAME

EXTRACT MOVE

P1'' 41

37

29

21

21

Over	Time	Graph	Patterns Support

P2''

P3''

P4''

P5''

(b) JavaScript

Figure 3.29 presents a subgraph from Glide with pattern P1′. A single developer

performed the operations that represent the over time pattern in commits C1 and C2.

First, he renamed buildStreamOpener to buildStreamLoader.35 The developer repeated

the same operation ten days later, replacing the prefix build by get in the method’ name.36

In the case of JavaScript, support values are lower due to the sample size. However,

the results show a similar tendency. All over time patterns have three vertices, as shown

in Table 3.13. Besides, as presented in Figure 3.28, the top-2 patterns are homogeneous.

35https://github.com/bumptech/glide/commit/6bbe4343c
36https://github.com/bumptech/glide/commit/c572847b4

https://github.com/bumptech/glide/commit/6bbe4343c
https://github.com/bumptech/glide/commit/c572847b4

3.2. Quantitative Study 57

Figure 3.29: Example of a refactoring graph pattern from Glide (Java, 153 occurrences)

RENAME RENAME

Pattern	P1'

Commit	C1 Commit	C2

RENAME
MOVE	AND
RENAME

Refactoring graph patterns with four vertices: In both languages, all patterns with four

vertices belong to the possibly atomic group. Figure 3.30 presents an example from Spring

Framework. This graph describes multiple extract operation from method processCons-

traintV iolations(...) to three methods.37 This pattern occurs in 19 subgraphs in our

dataset.

Figure 3.30: Example of a possibly atomic graph pattern from Spring Framework (Java, 19
occurrences)

Pattern	P6'

EX
TR
AC

T	

EXTRACT	

EXTRACT	

Refactoring graph patterns with five vertices: In Java, the sole graph pattern occurs in 16

subgraphs and it includes four inline operations. Figure 3.31 shows a refactoring subgraph

from RxJava with this pattern (P7′). In this subgraph, the inline operations involve the

removal of method threadPoolForComputation, and replacement of the respective calls

in six methods.38 There are no occurrences of patterns with five vertices in JavaScript.

Summary of RQ6: In Java, the top-3 over time patterns are rename → rename (153

occurrences), move → move (65), and rename → move (44). In JavaScript, the top-3

over time patterns are move → move (41 occurrences), rename → rename (37), and

rename → move (29).

37https://github.com/spring-projects/spring-framework/commit/c43acd7675
38https://github.com/ReactiveX/RxJava/commit/320495fde

https://github.com/spring-projects/spring-framework/commit/c43acd7675
https://github.com/ReactiveX/RxJava/commit/320495fde

3.3. Qualitative Study 58

EXTRACT	AND
MOVE

INLINE

INLINE

INLINEIN
LIN

E

IN
LI
NE

IN
LI
NE

Pattern	P7'

Figure 3.31: Example of a refactoring graph pattern from RxJava (Java, 16 occurrences)

3.3 Qualitative Study

As we reported in Section 3.2.2, most subgraphs are small in terms of their number

of vertices, edges, and commits. For this reason, we showed small examples when dis-

cussing our quantitative RQ results. However, we also found subgraphs describing major

refactoring operations. Therefore, the goal of this second study is to qualitatively analyze

such subgraphs, with the purpose of investigating the motivation behind large refactoring

operations performed over time. Specifically, we conducted a survey with the developers

responsible for these refactorings. The context of the study consists of nine developers’

feedback about 66 refactoring operations from eight subgraphs. These subgraphs repre-

sent the top-1% largest graphs in our dataset, by number of vertices.

3.3.1 Survey Design

Selecting Refactoring Subgraphs

We started by selecting the top-1% subgraphs by the number of vertices per programming

language. In this way, for Java, we picked subgraphs with at least seven vertices, resulting

in 132 instances. In the case of JavaScript, the top-1% refer to 27 subgraphs with at least

six vertices. For both languages, we ordered the subgraphs by the number of vertices and

we executed the following steps for each one:

1. We identified the authors of the commits associated with the subgraph. If one of the

developers selected in this step was previously contacted, we also discarded her. Our

3.3. Qualitative Study 59

goal is to avoid sending more than one email per developer, reducing the perception

of our survey as spam.

2. In this last step, we manually inspected the selected subgraphs to confirm whether

the edges and vertices refer to true positives operations. As a result, we cleaned the

subgraphs by removing false positive edges. Lastly, after those filtering steps, we

contacted the authors.

We manually inspected 50 subgraphs (33 in Java and 17 in JavaScript), comprising

16 distinct projects.39 In Java, the 33 subgraphs refer to 557 refactorings, which were

detected by RefDiff in 120 commits, as shown in Table 3.14. Overall, the tool presents

a high precision: 486 out of 557 (87%) refactorings are true positives. For instance, the

precision for extract and move method is 93%, which is the most frequent refactoring

operation (243 occurrences).

Table 3.14: Precision (Java)

Refactoring # TP FP Prec. Commit Proj. Subgraphs

Extract and move 243 226 17 0.93 43 7 22
Inline 117 81 36 0.69 21 5 12
Extract 90 80 10 0.89 31 5 18
Push down 38 30 8 0.79 6 4 6
Move 24 24 0 1.00 15 7 12
Rename 23 23 0 1.00 15 6 9
Pull up 19 19 0 1.00 3 2 3
Move and rename 3 3 0 1.00 3 2 2

All 557 486 71 0.87 120 8 33

We followed the same steps in JavaScript by inspecting 133 refactoring operations

in 60 distinct commits, as presented in Table 3.15. We notice that the overall precision is

also high (93%). For instance, the most common refactoring operation is extract function

(79 occurrences), whose the precision is 97%.

Contacting Developers

From July to August 2020, we sent emails to 62 developers asking for the motivations

behind the refactoring subgraphs (see the template in Figure 3.32). In the emails, we

added a short description of our research goals and a screenshot of the subgraph they are

responsible for. In this case, the developer may be responsible for the whole subgraph

or a piece of it. We also implemented a web app to navigate the graph structures, i.e.,

by using this app, our survey participants could check the vertices names, edges, and

commits. Therefore, we included a link to the surveyed subgraphs in the survey message,

as in the following example from Elasticsearch:

39https://github.com/alinebrito/refactoring-graphs-thesis

https://github.com/alinebrito/refactoring-graphs-thesis

3.3. Qualitative Study 60

Table 3.15: Precision (JavaScript)

Refactoring # TP FP Prec. Commit Proj. Subgraphs

Extract 79 77 2 0.97 36 8 16
Move 19 19 0 1.00 9 5 7
Internal move 9 9 0 1.00 3 3 3
Rename 9 9 0 1.00 8 6 8
Extract and move 11 4 7 0.36 4 3 3
Move and rename 4 4 0 1.00 3 2 3
Inline 1 1 0 1.00 1 1 1
Internal move and
rename

1 1 0 1.00 1 1 1

All 133 124 9 0.93 60 8 17

https://refactoring-graph.github.io/#/elastic/elasticsearch/713

Figure 3.32: Email sent to the authors of refactoring subgraphs

Dear [developer name],

I’m a Ph.D. student at UFMG, Brazil, investigating large refactoring operations.

I’m using a graph structure to represent such refactorings (the vertices are methods and the
edges are refactoring operations performed on them).

I found that you performed the following “big refactoring” on [repository/project]:

[screenshot of the subgraph]

To better navigate in this graph (e.g. see the vertices names), you can also check:
https://refactoring-graph.github.io/#/repository/project/subgraphID

Could you please describe why these refactorings were performed?

Table 3.16 summarizes the numbers and statistics about this qualitative study,

as previously described in this section. We received nine answers, which represents a

response ratio of 15%. Each of them corresponds to the developer’s motivation to perform

a set of refactorings. In a single case, the developer did not remember the motivation

to perform the refactorings because it involved old commits. Overall, the answers are

from relevant open-source developers. For example, we received replies from developers

working in VMware, Elasticsearch, and Square. Besides, seven developers are among the

top-10 contributors in the studied systems. In summary, our qualitative study contains

answers from 66 refactorings instances represented in seven refactoring subgraphs. We

used labels D1 to D9 to designate the developers and their responses and labels G1 to G7

to indicate the subgraphs.

https://refactoring-graph.github.io/#/elastic/elasticsearch/713

3.3. Qualitative Study 61

Table 3.16: Numbers of the qualitative study

Large refactoring subgraphs sent to authors 50
Inspected refactoring operations (edges) 690
Emails sent to author 62
Received answers 9
Response ratio 15%

3.3.2 Survey Results

As presented in Table 3.17, the survey answers suggest two major reasons behind

large refactoring subgraphs. In the following paragraphs, we explain and provide examples

for each motivation.

Table 3.17: Reasons to perform large refactoring subgraphs

Motivation Subgraphs Refactorings

Fix bugs or improve existing features 5 35
Improve code design 2 30
Unclear 1 1

Improve code design: With 30 edges and two subgraphs, this category was inspired

by a recent theme proposed in the literature [75]. Essentially, it groups large refactoring

operations to improve maintainability or encapsulation. As examples, we have the follow-

ing answers from two authors of the same subgraph, which is shown in Figure 3.33.40 In

the first answer, D2 performed two refactoring operations by extracting a function and

moving it to a distinct file. Similarly, D3 also moved a function. In their answers, the

developers emphasized their major motivation was to improve the code design:

“Specifically in the case of [Function Name] all of the code was in a single file. The first

step toward making it more maintainable is by reducing scope, also known as encapsula-

tion. (...) I moved [Function Name] out, and a bunch of other functions into separate

modules in order to reduce scope, or at least try to minimize it (...)” (D2, 2 refactorings

in subgraph G1)

“It was a large file. It is easier to maintain by separating in several components (...)”

(D3, 1 refactoring in subgraph G1)

Figure 3.34 shows a second example in this category.41 In this case, the author

of one move operation and 26 extract and move operations points that the major reason

was to migrate parts of the code to the appropriate container:

40https://refactoring-graph.github.io/#/request/request/0
41https://refactoring-graph.github.io/#/square/okhttp/485

https://refactoring-graph.github.io/#/request/request/0
https://refactoring-graph.github.io/#/square/okhttp/485

3.3. Qualitative Study 62

Figure 3.33: Example of a large subgraph from Request (G1, JavaScript)

“Most of the refactorings here move code that’s logically related to also be physically re-

lated.” (D6, 27 refactorings in subgraph G4)

Figure 3.34: Example of a large subgraph from Square Okhttp (G4, Java)

Fix bugs or improve existing features: In five answers (56%), developers essentially

mention opportunistic refactorings performed during changes to fix bugs or improve fea-

tures, which are also reported in a recent study [73]. This category includes 35 refactorings

located in five distinct subgraphs. As a first example, we show an answer related to sev-

eral extract and move operations performed to create two methods, as represented in the

subgraph in Figure 3.35.42 D5 explains his motivation was to improve the usage of events

subscription feature:

“I did those to make sure that empty/error cases use the right objects and call the right

methods everywhere they are needed. In addition, they would now indicate in the original

method that there are no extra actions intended to be performed on those code paths.”

(D5, 15 refactorings in subgraph G3)

42https://refactoring-graph.github.io/#/ReactiveX/RxJava/784

https://refactoring-graph.github.io/#/ReactiveX/RxJava/784

3.3. Qualitative Study 63

Figure 3.35: Example of a large subgraph from RxJava (G3, Java)

D8 also points to the maintainability of a feature by pushing down a method to

nine subclasses, as presented in Figure 3.36.43 In this example, the goal is to support a

non-mutable communication option:

“We have a concept in [Project Name] used for reading/writing objects when forming

requests/responses for inter-node communication. That concept originally depended on

using default constructors, with mutable members (...) In order to allow non mutable state

in these requests/responses, we changed this model (...) I found there were many layers at

the top of the hierarchy of classes that were no longer needed (...) The change referenced

here was to remove the [Method Name] from base classes that no longer contained any

logic.” (D8, 9 refactorings in subgraph G6)

Figure 3.36: Example of a large subgraph from Elasticsearch (G6, Java)

As a last example involving fixing an existing thread-related bug, we show D7’s

answer. In this case, the developer performed the refactorings to provide a safe mode to

instantiate a class, generating the subgraph in Figure 3.37:44

43https://refactoring-graph.github.io/#/elastic/elasticsearch/308
44https://refactoring-graph.github.io/#/spring-projects/spring-framework/2820

https://refactoring-graph.github.io/#/elastic/elasticsearch/308
https://refactoring-graph.github.io/#/spring-projects/spring-framework/2820

3.4. Discussion and Implications 64

“We pushed everything from the front-facing API class (...) that enabled us to call the

existing [Class Name] thread safe because each use of it would now create and use a new

instance (...) Prior to the change if two threads had the same [Class Name] and called

parse at the same time, I think it would get into a mess.” (D7, 6 refactorings in subgraph

G5)

Figure 3.37: Example of a large subgraph from Spring Framework (G5, Java)

Finally, in two answers, the motivation is also related to fixing bugs:

“(...) I centralized some repeated code around timeouts and fixed a bug where it wasn’t

cleared properly.” (D1, 3 refactorings in subgraph G1)

“I was doing closure elimination and memory leakage fix in the two refactoring (...)” (D4,

2 refactorings in subgraph G2)

3.4 Discussion and Implications

Refactoring over time & programming languages. In this chapter, we analyzed

refactoring graphs in two different programming languages: JavaScript and Java. These

languages have distinct styles. Java is a strongly-typed and object-oriented programming

language, while JavaScript is an interpreted and dynamic language. Despite their distinct

properties, our results regarding refactoring operations over time are similar in both lan-

guages, as summarized in Table 3.18. For example, in both languages, most subgraphs are

small (RQ1) and heterogeneous (RQ4). On the other hand, there is a significant variation

in the absolute number of detected refactoring subgraphs. We found 1,198 subgraphs over

3.4. Discussion and Implications 65

time in Java and 327 subgraphs in JavaScript. However, considering the relative rate, the

results remain similar (13% in Java, 15% in JavaScript).

Detecting refactorings over time. Several tools and techniques are proposed in the lit-

erature to detect refactoring operations, such as Refactoring Crawler [33], RefFinder [55],

Refactoring Miner [86, 94], and, more recently, RefDiff [85] and RefactoringMiner [95, 96].

In common, those approaches only detect atomic refactorings, i.e., operations that hap-

pen in a single commit and performed by a single developer. However, as presented in

Section 3.2, there is a significant rate of refactoring operations spreading over multiple

commits (RQ0). In contrast, our approach, refactoring graphs, focuses on the detection of

refactorings over time, i.e., operations over multiple commits and performed by multiple

developers. Moreover, differently from the batch refactoring [12, 26, 70], our approach is

not constrained by the number of developers nor to a time window. Indeed, we found

refactoring subgraphs with time span ranging from weeks to months (RQ3) and created

by multiple developers (RQ5). Therefore, we contribute to the refactoring literature with

a novel approach to detect and explore refactoring operations in a broader perspective to

complement existing tools and techniques. In addition, these tools do not cluster refactor-

ing operations performed in multiple steps. For example, suppose a developer extracted

class Foo from class Bar in commit C1. In this case, the tool used in this chapter detects

an Extract Class, since the refactoring generates a new entity. However, if she keeps

moving methods from Bar to Foo in the next commits, the tool does not group these

operations. Instead, it reports them as isolated move operations. Therefore, we also

envision studies on new strategies to cluster or group related refactorings performed in

multiple steps. Besides, it would be interesting to evaluate the impact of such “missing”

operations in the results and findings of previous empirical studies that relied on atomic

refactoring detection tools [5, 12, 16, 49, 73, 89, 98].

Refactoring comprehension and improvement. When performing code review, de-

velopers often adopt diff tools to better understand code changes, and decide whether they

will be accepted or not. In this process, developers may also look for defects and code

improvement opportunities [9]. However, if the reviewed change is large and complex,

this task becomes challenging [9]. To alleviate this issue, refactoring-aware code review

tools were proposed [23, 39, 40, 45] to better understand changes mixed with refactor-

ings. Refactoring graphs can contribute to handle this issue by providing navigability at

method level. That is, a code reviewer may navigate back in a method to reason how a

similar change was performed. For example, in Figure 3.24, a code reviewer may inves-

tigate whether all methods were properly renamed in the past, before accepting commit

C3. Thus, refactoring graphs can be integrated to code review tools to better support code

understanding and improvement.

3.4. Discussion and Implications 66

Table 3.18: Summary of refactoring graphs properties

RQ Description Java JavaScript

- Refactoring sub-
graphs over time

1,198 subgraphs (13%) 327 subgraphs (15%)

- Level Method Function

RQ0 Refactoring ope-
rations over time

3,853 (29%) operations are
part of subgraphs over time

902 (32%) operations are
part of subgraphs over time

RQ1 Size in vertices Most subgraphs are small
(median = 3)

Most subgraphs are small
(median = 3)

RQ1 Size in edges Most subgraphs are small
(median = 2)

Most subgraphs are small
(median = 2)

RQ2 Number of commits Most subgraphs are cre-
ated from at most three
commits (1,135 occur-
rences, 95%)

Most subgraphs are cre-
ated from at most three
commits (304 occurrences,
93%)

RQ3 Time span 64% have more than one
month

67% have more than one
month

RQ4 Refactoring types Most subgraphs represent
rename method (20%),
move method (18%), and
extract and move method
(17%)

Most subgraphs represent
extract function (26%),
move function (26%), and
rename function (24%)

RQ4 Homogeneity Most subgraphs are hetero-
geneous (852 occurrences,
71%)

Most subgraphs are hetero-
geneous (209 occurrences,
64%)

RQ5 Ownership Most subgraphs are cre-
ated by a single developer
(736 occurrences, 61%)

Most subgraphs are cre-
ated by a single developer
(203 occurrences, 62%)

RQ6 Refactoring Patterns The top-3 over time pat-
terns are rename → re-
name (153 occurrences),
move →move (65), and re-
name → move (44)

The top-3 over time pat-
terns are move → move
(41 occurrences), rename
→ rename (37), and re-
name → move (29)

Detecting refactoring patterns and smells. In our qualitative study, we investigated

subgraphs describing large refactoring operations (RQ1). As we can notice, these sub-

graphs may represent the improvement of pieces of code. For instance, Figure 3.34 shows

a large subgraph from our dataset. Among the refactoring instances, there are 21 extract

method operations, generating a single method with two lines of code. This method is

represented as a node in the subgraph (in the bottom), which is the node with the highest

in-degree, i.e., the highest number of edges coming to it. Therefore, it may indicate a

pattern to move a specific duplicated code to an appropriate container. In addition, there

is an interesting question in this context: could the developer extract these two lines from

another part of the project? In other words, should the graph have more edges? In the

same way, a high out-degree of a node, i.e., a high number of edges leaving it, can suggest

an anomaly on a method. For example, Figure 3.19 shows a subgraph with four extract

3.5. Threats to Validity 67

operations from a single method. In this case, it is probably a frequent behavior during a

method evolution, since in RQ6, we identify refactoring graph patterns that are formed by

three extract operations (Figure 3.30). However, a method which is decomposed several

times over time (i.e., high out-degree) can reveal a code design problem. Thus, refactor-

ing graphs can foment the detection of refactoring anomalies over time and drive future

research agenda on refactoring patterns.

Understanding and assessing software evolution. During software evolution, devel-

opers often perform refactoring operations. Consequently, the link between methods may

be lost [49]. For example, if a method a() is renamed to b() and then extracted to c(), it

becomes quite hard to trace a() to c(), and vice versa. This has several implications to

software evolution research, particularly on studies that assess multiple code versions, such

as code authorship detection [7, 44, 67, 77, 91], code evolution visual supporting [41, 42],

bug introducing change detection [27, 58, 78, 79, 104], to name a few. In practice, these

studies often rely on tools provided by Git and SVN, such as git blame and svn blame,

which show what revision and author last modified each line of a file. However, this

process is sensitive to refactoring operations [7, 49]. As Git and SVN tools cannot track

fine-grained refactoring operations, particularly at method level, these approaches may

miss relevant data. For instance, in the aforementioned example, it would be not possible

to detect that method c() was originated in method a(). Consequently, we would be not

able to find the real creator of method c() nor the developer who introduced a bug on

c(). As shown in Section 3.2, most subgraphs are small (RQ1) and have few commits

(RQ2), suggesting that the whole history of the elements may contain a few ruptures due

to refactoring. However, it still may reflect a significant impact on the retrieval of source

code changes [43, 49]. With refactoring graphs, we are able to resolve method names over

time, thus, software evolution studies can benefit as more precise tools can be created on

the top.

3.5 Threats to Validity

Generalization of the results. We analyzed 1,525 refactoring subgraphs from 20 pop-

ular and open-source Java and JavaScript systems. Therefore, our dataset is built over

credible and real-world software systems. Our qualitative study reinforces recent results

about motivations to refactor a source code [73, 75, 86], which were reported in another

contexts. Also, the motivations are based on answers from relevant contributors to the

open-source community. Despite these observations, our findings—as usual in empiri-

3.5. Threats to Validity 68

cal software engineering—may not be directly generalized to other systems, particularly

commercial, closed source, and the ones implemented in other languages than Java and

JavaScript. Finally, we focus our study on eight refactorings at method level (Java) and

eight refactorings at function level (JavaScript). Thus, other refactoring types can af-

fect the size of subgraphs. We plan to extend this research to cover software systems

implemented in other programming languages and refactorings at class level.

Adoption of RefDiff. We adopted RefDiff to detect refactoring operations because it

is the sole refactoring detection tool that is multi-language, working for Java, JavaScript,

C, and Go [22, 87]. It is also extensible to other programming languages. In this chapter,

we concentrated on Java and JavaScript systems. Thus, as we planned to extend this

research to cover other programming languages than Java, RefDiff was the proper solution.

Besides, despite being multi-language, RefDiff accuracy is quite high. For example, in the

current version [87], the authors provide an evaluation of the tool for three languages:

Java (precision: 96.4%; recall: 80.4%), JavaScript (precision: 91%; recall: 88%), and C

(precision: 88%; recall: 91%). The recent evaluation for Go reports 92% of precision

and 80% of recall [22]. In our dataset, the tool also presents a high precision for Java

(557 refactoring instances; precision: 87%) and JavaScript (133 refactoring instances;

precision: 93%). Recently, Tsantalis et al. [95, 96] proposed the refactoring detection tool

RefactoringMiner. In the current version [96], RefactoringMiner has a precision of 99.6%

and recall of 94%, improving on RefDiff’s overall accuracy. However, RefactoringMiner

works only for Java projects. Finally, RefDiff detects refactorings using a generic data

structure called Code Structure Tree (CST). The generation of this data structure for

JavaScript relies on a simplified call graph due to the dynamic nature of the language.

This might result in a higher rate of false negatives. However, the authors mention the tool

“works well even when the information encoded in the CST is not completely precise”[87].

Building refactoring graphs. When creating the refactoring graphs, we cleaned up our

data (i.e., vertices and edges) to keep only meaningful subgraphs. For instance, in Java,

we removed constructor methods (vertices) from our analysis because they include mostly

initialization settings, and do not have behavior as conventional methods. In JavaScript,

we removed refactorings in anonymous functions, i.e., functions without a name, since it

is necessary to generate the vertices in the refactoring subgraphs. We also removed some

very specific cases of refactoring (edges) in which RefDiff reported operations in same ele-

ment. However, these cases are not likely to affect our results because they only represent

a fraction of the refactoring operations. For example, RefDiff detected 89% of the removed

operations in anonymous functions in only two systems (Facebook React, 85 occurrences;

Hexo, 82 occurrences). Finally, the refactoring subgraphs can include unintentional opera-

tions (e.g., reverted commits by automatic deployment systems). To mitigate this threat,

we focus our study on the main branch evolution to avoid experimental or unstable ver-

3.6. Final Remarks 69

sions. Additionally, our results can miss refactoring operations that have not been merged

on the main branch. However, as mentioned in previous studies [49], this strategy pro-

vides a safe overview of the system, avoiding refactorings performed in experimental code.

Also, the qualitative study confirmed the selected branches are active ones. For example,

developers mentioned large refactoring operations to implement features or improve code

design in commits from these branches.

Detection of developers. In RQ5, we investigate the number of developers per refac-

toring subgraphs. We used the email available on git log to distinguish the author of the

commits. Thus, our results can include, for example, the same developer committing with

different email addresses. But, we already found that most cases are subgraphs created

by a single developer.

Large refactoring graphs motivations. In the qualitative study, we manually in-

spected the refactoring subgraphs. Although this inspection might be an error-prone

task, it was carefully performed during about a month. Furthermore, we did not receive

complaints from the survey participants about false positives that were not detected in

this analysis. Our analysis is also publicly available.45

3.6 Final Remarks

In this chapter, we present refactoring graphs, an approach to assess refactoring

operations over time. We analyzed 1,525 refactoring subgraphs from 20 popular systems

and two programming languages, Java and JavaScript. We then investigate seven research

questions to evaluate the following properties of refactoring graphs: operations over time,

size, commits, time span, homogeneity, ownership, and patterns. In both languages, the

results suggest a similar tendency. We summarize our findings as follows:

• Approximately 30% of refactoring operations are part of a refactoring subgraph over

time.

• The majority of the refactoring subgraphs are small (four nodes and three edges).

However, there also outliers with dozens of nodes and edges.

• Most refactoring subgraphs have up to three commits.

• Refactoring subgraphs span from few days to months.

45https://github.com/alinebrito/refactoring-graphs-thesis

https://github.com/alinebrito/refactoring-graphs-thesis

3.6. Final Remarks 70

• Refactoring graphs are often heterogeneous, that is, they are composed by several

types of refactoring.

• Refactoring graphs are mostly created by a single developer.

In the last research question, we mine graph patterns in approximately 9k sub-

graphs in Java and 2k subgraphs in JavaScript. Our results point to recurring graph

patterns over time formed by two edges (e.g., successive rename operations). As a com-

plementary perspective, we also perform a qualitative study with large refactoring sub-

graphs from our dataset, i.e., subgraphs with several vertices and edges. We contacted

the developers, asking for the motivation for their operations. Considering nine develop-

ers’ answers, 66 refactoring instances, and seven subgraphs, our results suggest that large

refactoring subgraphs are motivated by well-know maintenance activities, involving the

improvement of code design, fixing bugs, or the improvement of features. However, it is

also important to mention that a single graph may include multiple of such motivations.

Based on our findings, we provided further discussion and implications to our

study. Particularly, (i) we discuss our contributions regarding refactoring tools as a novel

approach to explore refactoring operations in a broader perspective; (ii) we argue that

refactoring graphs can be integrated to code review tools to better support code compre-

hension; (iii) we claim that refactoring graphs can play a role on the detection of refac-

toring patterns and anomalies; and (iv) we state the importance of refactoring graphs to

resolve method names and support software evolution studies.

71

Chapter 4

Refactoring Comprehension Using

Refactoring Graphs

In the previous chapter, we conducted an empirical study to formalize and characterize

refactoring graphs in relevant systems. Our ultimate goal was to show the frequency

and main aspects of refactoring graphs in the wild. In the current chapter, we aim to

present a first application of refactoring graphs. Specifically, we assume a professor’

perspective inspecting refactoring tasks performed by 46 Computer Science students. In

this scenario, we used refactoring graphs to assist the understanding and visualization

of the refactoring operations. The students refactored a Video Store System, which is a

canonical example proposed by Fowler [35] to introduce refactoring concepts.

This chapter is organized as follows. Section 4.1 introduces the relevance of con-

ducting this study. Section 4.2 includes details about the Video Store System and Section

4.3 shows the representation of refactoring operations as graphs. Section 4.4 describes

the design of our study, while Section 4.5 shows the results. We discuss the implications

in Section 4.6, and Section 4.7 states threats to validity. Finally, we conclude the chapter

in Section 4.8.

4.1 Motivation

A large number of studies investigate refactoring practices in the last 30 years [1].

Many of those studies focus on refactoring comprehension, for example, assessing motiva-

tions, benefits, impact, and challenges of refactoring operations [57, 75, 82]. There are also

approaches and tools to understand source code affected by refactoring [23, 43, 87, 96].

However, typically, prior literature does not rely on abstractions to extract, visualize, and

understand complex refactoring tasks performed over time, which is a relevant aspect for

researchers and practitioners [4, 14].

Therefore, in this chapter, we explore refactoring graphs to visualize, interpret, and

4.1. Motivation 72

evaluate refactoring tasks performed over time. For this purpose, we rely on a canonical

refactoring example: a Video Store System, proposed by Fowler [35]. This example is

used by Fowler to present and discuss refactoring operations, practices, and benefits.

Specifically, we invited 46 students from a Software Engineering undergraduate course to

perform refactoring operations in the Video Store System under two distinct scenarios.

The first one includes a list of explicit and well-defined guidelines, i.e., refactoring tasks

with detail instructions about the piece of code that should be refactored and the expected

operations. The second scenario comprises flexible and open guidelines, in which we asked

the students to implement the Template Method design pattern [37].

After that, we generated refactoring graphs to describe the refactorings performed

by each student. Particularly, our guidelines generate a large refactoring graph with 24

vertices and 26 edges.

To better understand the tasks performed by the students, we first rely on a graph-

based metric. Specifically, for explicit guidelines, we used a similarity metric called edit

distance to compare each student’s graph with our ground truth [81]. This strategy allowed

us to automate the analysis of the tasks performed by the students and to rapidly conclude

whether they matched our proposed ground truth. It also allowed us to rapidly identify

and analyze the divergences between the student’s solution and the ground truth. In the

case of flexible guidelines, we performed a visual inspection by navigating in the graph-

based structure to verify, for example, refactoring operations, sequence of operations, and

affected elements. Our key results are summarized as follows:

Explicit Guidelines: When following explicit guidelines, most students performed refac-

toring tasks successfully (93.5%). The few mistakes refer to refactorings performed in

multiples commits.

Flexible Guidelines: When following flexible guidelines, less students implemented the

design pattern successfully (70%). Particularly, a significant part of the students faced

difficulties identifying the appropriate refactorings operations.

Contributions: First, we show that refactoring graphs can be used to understand, eval-

uate, and visualize refactoring tasks. In some cases, this analysis can be automated using

standard graph metrics, such as edit distance. Second, we complement research on refac-

toring practices, mainly on the educational side, by exploring the student’s understanding

of refactoring.

4.2. Video Store System 73

4.2 Video Store System

In the study described in this chapter, the students followed the steps proposed

by Fowler [35] to refactor a well-known example designed to illustrate the benefits and

the mechanisms of refactoring: a system to calculate and print clients’ charges at a Video

Store.1 Basically, the system prints the movies rented by a client with prices and the

number of rented days. The price depends on the movie’s category (i.e., regular, children,

and new releases) and the number of rented days. Figure 4.1 presents the initial class

diagram of the system, which contains three classes:

Figure 4.1: Class diagram of video store system (initial version)

Movie Rental Customer

title:	string daysRented:	int name:	string

statement()

1 * 1*

• Movie: class that represents a movie with the respective data, i.e., title, price, and

category.

• Rental : class that represents a client renting a movie. It includes information about

the movie and the number of rented days.

• Customer : class to represent the store’ clients. It comprises information as the

client’s name and a list of rented movies. There is also a method, named statement(),

which prints the statement in text format.

Figure 4.2 presents the final class diagram of the system after applying the refac-

toring operations. The new code design is a consequence of several refactoring operations

to improve existing code and incorporate a new feature. Among these refactorings, most

cases aim to decompose the large method statement() by extracting and moving distinct

pieces of the code. Other refactorings generate the class Price and their subclasses in

seven main steps, as proposed by the State design pattern. In this case, the goal is to

remove a conditional statement that determines the price of each video category. There

are also classes to print the statement in different formats (i.e., HTMLStatement and

TextStatement), as proposed by the Template Method pattern.

1In the 2nd edition of his book, Fowler changed the system to JavaScript. However, we decided to
use the original system since it is still widely known.

4.3. Refactoring Subgraph from Video Store System 74

Figure 4.2: Class diagram of video store system (final version)

Movie Rental Customer

title: string daysRented: int name: string1 * 1*

Price

ChildrensPrice NewReleasePrice RegularPrice

1

getCharge()
getFrequentRenterPoints()

getCharge(days: int)
getFrequentRenterPoints(days: int)

getCharge(days: int)
getFrequentRenterPoints(days: int)

getCharge(days: int) getCharge(days: int) getCharge(days: int)
getFrequentRenterPoints(days: int)

HtmlStatement TextStatement

headerString(Customer)
eachRentalString(Rental)
footerString(Customer)

headerString(Customer)
eachRentalString(Rental)
footerString(Customer)

Statement

value()

1

headerString(Customer)
eachRentalString(Rental)
footerString(Customer)

statement()
htmlStatement()
getTotalCharge()
getTotalFrequentRenterPoints()

4.3 Refactoring Subgraph from Video Store System

We use refactoring graphs to visualize and understand the refactoring tasks per-

formed by the students in our experiment. Specifically, we rely on the definition that are

described in Chapter 3. Therefore, in this study, the vertices represent the full signature

of methods. The edges refer to the refactoring type (e.g., extract method), and it includes

additional information about the operation (e.g., author name, date, and commit).

In this context, following all the steps to refactor the Video Store System creates a

large subgraph with 24 vertices and 26 edges, as presented in Figure 4.3. As we can notice,

14 edges refer to extract operations, generating one or more methods, i.e., new vertices

in the subgraph. The subgraph also includes two pull up methods, six pull up signatures

(when only the signature is pulled up, preserving the method body in the subclass), and

three push down implementations (when the signature is kept in the superclass, as an

4.4. Study Design 75

abstract method). There is a single operation called move and rename method, which

moves a method to a distinct class, changing its name.

Figure 4.3: Refactoring subgraph from Video Store System (ground-truth)

EXTRACT
AND MOVE

EXTRACT
AND MOVE

MOVE AND
RENAME

EXTRACT
AND MOVE

EXTRACT
AND MOVEEXTRACT

EXTRACT

AND MOVE

EXTRACT
AND MOVE

EXTRACT

EXTRACT

EXTRACT

PULL UP

PULL UP

EXTRACT

EXTRACT

EXTRACT

PULL UP
SIGNATURE

PULL UP
SIGNATURE

PULL UPSIGNATURE

PULL UP

SIGNATURE

PULL UP

SIGNATURE

PULL
 U

P

SIG
NATURE

PUSH DOWN

IMPLEMENTATION

PUSH DOWN
IMPLEMENTATION

PUSH DOWNIMPLEMENTATION

EXTRACT

AND MOVE

4.4 Study Design

4.4.1 Study Participants

We perform our study with 46 undergraduate students in Computer Science (10

women and 36 men), which we label from S01 to S46. Specifically, they are students

concluding a Software Engineering course. In this course, they have studied topics such

as refactoring, testing, design patterns, and clean code. The students could decline partic-

ipation in the study. Also, we inform the participants that the results could be reported

exclusively in an anonymous format. The period to perform the proposed refactoring

exercise was one week. The results do not include three students who completed the set

of tasks in less than ten minutes.

4.4. Study Design 76

4.4.2 Refactoring Tasks & Research Questions

Each student received the three initial classes—Movie, Rental, and Customer—

and the instructions to perform the refactorings. We separate the study into two main

parts: explicit and flexible guidelines.

The first part refers to explicit guidelines, in which the students received explicit

information about the expected refactoring tasks. Specifically, these guidelines indicate

the piece of code that should be refactored, the refactoring type, and the signature of the

new methods. There are 15 main steps. Three of them introduce new methods or classes,

and the other cases involve refactoring operations to make the source code cleaner or to

apply changes in the inheritance hierarchy. There is also large refactoring to replace a

conditional by polymorphism, which results in a new Price hierarchy. Each step finishes

with a commit indicating the conclusion of a refactoring task.

After finishing the first part, there are two similar methods in class Customer,

statement() and htmlStatement(), which print the statement in ASCII and HTML

formats, respectively. Therefore, in the second part of the study, we described to the

students the problems of this design structure. For example, it is necessary to duplicate

the code to print the statement in other formats, such as CSV, JSON, etc. To mitigate

this issue, Fowler proposes the usage of a Template Method. To implement this pattern,

it is necessary to extract and move a set of similar methods to new classes. Then, multiple

extract operations are needed to make the methods identical. As a final operation, a set

of pull up operations should be performed to generate the template code.

Therefore, the second part includes a set of flexible guidelines. We invite the

students to implement the Template Method pattern to eliminate duplicated code as we

previously described. Different from the explicit guidelines, we do not indicate operations

or details about the piece of code that should be refactored. Each student received only

high-level instructions. Specifically, they should create a template method by refactoring

the source code. For all tasks, there are no restrictions regarding the use of automatic

refactoring tools, which are provided, for example, by IDEs.

We report each guideline results in distinct research questions, which are described

in Section 4.5. Specifically, we present the findings from explicit guidelines in RQ1, and

the results from flexible guidelines in RQ2. We use refactoring graphs as an abstraction

to understanding and visualizing the sequence of refactoring operations performed by the

students. In RQ1, we rely on a graph similarity metric to detect results that diverge

from our ground truth [81]. In RQ2, we perform a manual inspection of the refactoring

subgraphs created from the refactorings performed by the students.

4.4. Study Design 77

4.4.3 Detecting Refactoring Operations

We used RefDiff to identify the refactorings performed by the students [87]. As

mentioned in a previous section, our study concentrates on six distinct refactoring op-

erations over methods (i.e., extract, extract and move, move and rename, push down

implementation, pull up, and pull up signature). As described in Chapter 2, RefDiff is a

tool that detects refactorings by analyzing the commits of git-based projects. Therefore,

for the 46 projects (i.e., one project per participant), we iterate in the list of commits,

comparing each commit with its parent one.

4.4.4 Execution Time

We also computed the time to generate the refactoring graphs. To this purpose,

we used a Core i7-8550U workstation with 16 GB of RAM, 5,400 RPM HDD, and Ubuntu

18.04. The process to build our ground truth executed in 18 seconds. As we can observe

in Figure 4.4, regarding the students’ projects, the execution times are also low, ranging

from 20 to 31 seconds, with a median of 23 seconds. These runtime measures consider

the whole process, which includes getting the list of commits, detection of refactoring

operations by RefDiff, and generation of refactoring subgraphs. In total, we were able to

generate all refactoring subgraphs (of all students) in approximately 18 minutes.

Figure 4.4: Distribution of the time to generate refactoring graphs per student

23

20 22 25 31
Execution Time (seconds)

4.5. Results 78

4.5 Results

In this section, we discuss our results. We divide the discussion in two parts:

refactorings performed using explicit guidelines and refactorings performed using flexible

guidelines. We rely on refactoring graphs to interpret the refactoring tasks performed by

the students.

4.5.1 (RQ1) How do Students Apply Refactorings When

Following Explicit Guidelines?

The instructions from the explicit guidelines generate ten edges in the expected

refactoring subgraph (top of Figure 4.3). We compare this subgraph with our ground

truth, reporting the number of extra and missing edges. We also assess the similarity by

computing the subgraph edit distance. This distance is defined as the minimum number of

addition, deletion, and replacement of vertices or edges that makes the student’s subgraph

identical to the ground-truth graph. As shown in Table 4.1, only three students made

mistakes (6.5%). The other 43 students (93.5%) completed the tasks successfully, i.e., the

distance to the ground truth is zero.

Table 4.1: Subgraphs with mistakes in the explicit guidelines

Student
Edges

Distance
Total Extra Absent

S02 7 - 3 6
S22 9 - 1 1
S44 12 2 - 2

These three students only made minor errors. For example, in the sixth refac-

toring task, the students should extract and move the method Rental.getFrequent-

RenterPoints() from Customer.statement(). However, S22 performed this refactor-

ing in two steps. In the first commit, the student copied the code from statement()

to getFrequentRenterPoints(). In other words, the student created duplicated code.

However, in a second commit, the student removed the duplication, replacing the code

with a call to the new method.

There is a similar mistake in S02’s subgraph. In the thirteenth refactoring task, the

students received instructions to change method Price.getCharge() by pushing down

4.5. Results 79

the implementation to three subclasses. But, S02 also performed this refactoring in two

steps, creating duplicated code. In the first commit, the student copied the code to the

subclasses. In a subsequent commit, the student updated the superclass, keeping only the

method signature. Since the student did not perform the three push down implementations

in a single commit, our refactoring mining tool had not detected the refactorings. As a

result, the distance between the refactoring graphs is six. In other words, it is necessary

to add three edges and three vertices to make the subgraph identical to the ground truth,

as shown in Figure 4.5.

Figure 4.5: Example of a student’s refactoring subgraph. Dashed lines represent missing
edges and vertices (explicit guidelines, S02).

EXTRACT
AND MOVE

EXTRACT
AND MOVE

MOVE AND
RENAME

EXTRACT
AND MOVE

EXTRACT
AND MOVEEXTRACT

PUSH DOWN

IMPLEMENTATION

PUSH DOWN
IMPLEMENTATION

PUSH DOWNIMPLEMENTATION

EXTRACT

AND MOVE

(flexible guidelines)

Finally, S44 reverted a refactoring task, which generates two extra edges in the

subgraph. In this case, the reason is that the student created the new method with

only a piece of the expected code. Therefore, S44 reverted the operation and after that

performed it correctly.

Summary: When following explicit guidelines on refactoring operations, 93.5% of the

students perform the refactoring tasks successfully. The few mistakes refer to refactorings

performed in multiple commits. To evaluate the tasks, we used a similarity metric to

compare each student’s subgraph with the ground truth. We were able to obtain each

assessment in a few milliseconds.

4.5.2 (RQ2) How do Students Apply Refactorings When

Following Flexible Guidelines?

The flexible guidelines can be finished with three refactoring tasks. These tasks

refer to the implementation of the Template Method pattern, which generates 16 edges

in the ground truth refactoring subgraph (bottom of Figure 4.3). For this study part, we

performed a qualitative analysis by manually inspecting the 46 subgraphs and the source

code to investigate the students’ strategies. In the following paragraphs, we describe the

results. Overall, 32 students (70%) performed the flexible guidelines successfully.

4.5. Results 80

Task 1. In the first task, the students received instructions to create the superclass

Statement, as well as the respective subclasses (i.e., TextStatement and HtmlStatement).

Next, they were instructed to extract and move method statement() to subclass TextSta-

tement, which must contain the code to print the statement in ASCII format. Similarly, it

is necessary to extract and move method htmlStatement() to subclass HtmlStatement,

which contains the code to print the statement in HTML format. The two moved methods

should have the name value(). Most students performed these steps correctly, generat-

ing two edges in the subgraph (44 students, 96%). In two cases, minor mistakes refer to

unfinished refactorings.

Task 2. In the second task, we invited the students to perform all refactoring oper-

ations in order to make the two methods identical, i.e., HtmlStatement.value() and

TextStatement.value(). For each method, we expect at least three extract operations,

as presented in Figure 4.6. The first operation extracts a method to build the state-

ment’s header, returning the client’s name in a specific format (HTML or ASCII). The

second refactoring generates a method to retrieve the movie’s title and charge. Finally,

the third extracted method returns the statement’s footer, which contains information

about the price and the client’s renter points. In Figure 4.6, vertices A, B, and C in-

dicate the operations to decompose HtmlStatement.value(). Similarly, there are three

extract operations to decompose method TextStatement.value().

Figure 4.6: Refactoring operations to decompose method value() in subclass HtmlState-
ment (flexible guidelines, task 2)

A

B

C

EXTRACT

EXTRACT
EXTRACT

public String value(Customer aCustomer) {

Enumeration rentals = aCustomer.getRentals();

String result = "<H1>Rentals for " +
aCustomer.getName() + "</H1><P>\n";

while (rentals.hasMoreElements()) {

Rental each = (Rental) rentals.nextElement();
//show figures for each rental
result += each.getMovie().getTitle()+ ": " +
String.valueOf(each.getCharge()) + "
\n";

}

//add footer lines
result += "<P>You owe " +
String.valueOf(aCustomer.getTotalCharge()) + "<P>\n";

result += "On this rental you earned " +
String.valueOf(aCustomer.getTotalFrequentRenterPoints()) +
" frequent renter points<P>";

return result;

}

A Extract method
 getStatementHeader(Customer)

B Extract method
getStatementBody(Rental)

C Extract method
getStatementFooter(Customer)

We detect that 33 students (72%) performed the expected operations, i.e., they

decomposed the methods by extracting three new ones in each subclass. Interestingly,

five students (11%) used a different strategy. They divided the statement footer into two

methods. The first method returns the price and the second one returns the client’s renter

4.6. Discussion 81

points. As a consequence, these students created eight vertices in the subgraph (i.e, four

extract operations in each subclass).

Eight students (17%) did not perform extract operations to remove the code dupli-

cation. Among these cases, five students (11%) added fields. For example, S22 used fields

to customize the strings, as presented in Figure 4.7. The values of the fields are defined

in the constructors. For instance, field preName receives the value “<H1>Rentals for

” in subclass HtmlStatement. The same field receives the value “Rental Record

for” in the subclass TextStatement. Finally, S17 only added empty methods, and two

students did not make the methods identical.

Figure 4.7: Textual diff produced by GitHub. S22 added two fields (preName and
posName) in the header line (explicit guidelines, task 3)

4
5
6
7

public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();

String result = "Rental Record for " + aCustomer.getName()
+ "\n";

15
16
17

public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();

String result = _preName + aCustomer.getName() + _posName;

-
-

+

Task 3. Assuming the students performed the refactoring tasks as expected, we should

have in this step two identical methods value() in TextStatement and HtmlStatement.

As a final operation, we requested the students to remove this duplicated code. It is

expected at least six pull up signatures and two pull up methods in this last task, which

generates eight edges in the subgraph. Among the 46 students, 74% completed this task

successfully (34 occurrences).

Summary: When following flexible guidelines for refactoring operations, most students

implemented the Template Method pattern successfully (70%). Most mistakes refer to

students who faced problems identifying the appropriate operations. Refactoring graphs

assisted in visualization and understanding the sequence of refactoring tasks performed

by the students.

4.6 Discussion

First, among the most recurring students’ mistakes, there are refactoring opera-

tions completed in two steps (i.e., two commits). Refactorings performed along multiple

4.7. Threats to Validity 82

commits represent a threat to current studies on refactoring practices. Particularly, the

ones based on tools such as RefactoringMiner [86, 95, 96] and RefDiff [22, 85, 87]. These

tools detect refactorings by computing the “diff” between one commit and its parent. For

example, if we assume three sequential commits C1, C2, and C3, the tools will miss a

refactoring that starts in C1, but that is only finished in C2, as we observed when man-

ually analyzing the results of both RQs. Since studies on refactoring rely on the default

configuration of RefactoringMiner and RefDiff [5, 12, 16, 49, 73, 89], they do not consider

refactorings performed over multiple commits. Therefore, we also envision research on

new heuristics and techniques to detect refactoring in multiples commits, as well as the

investigation of their impact on mining software studies.

Second, several well-known graph algorithms can be used with refactoring graphs,

such as algorithms to mine graph patterns and metrics [61, 81, 102]. For example, in the

first research question, we used a similarity metric called graph edit distance to compare

our ground-truth subgraph with the students’ subgraphs. Refactoring graphs also allow

easy navigation on refactoring operations. We can inspect, for example, entity names,

visualize sequences of refactoring tasks, and identify missing and extra operations (i.e.,

edges and vertices). In this context, researchers can rely on refactoring graphs to perform

empirical studies on complex and large refactoring practices over time, which is a hurdle

recently pointed in the literature [4].

4.7 Threats to Validity

Refactoring tasks. First, the communication among the students is a possible threat in

our study. However, the participants received instructions to avoid sharing their source

code. To mitigate this threat, we removed outliers from our results. The period to perform

the proposed refactoring exercise was one week. For the explicit guidelines (RQ1), about

75% of the students complete the tasks up to 198 minutes (i.e., approximately three

hours), with a median of 106 minutes. In case of flexible guidelines (RQ2), 75% of the

students spent about one hour to conclude the three refactoring tasks (i.e., 65 minutes),

with a median of 44 minutes. The highest intervals probably refer to students that

paused the refactoring tasks for a while, returning on a distinct day. Considering the

distribution of the time, we eliminated the projects of three students, who performed

the explicit or flexible guidelines in less than ten minutes since this is not a viable time

to conclude the refactoring tasks. Second, the refactoring tasks include examples and

discussions, which are spread over eleven chapters of Fowler’s book. In other words, it

4.7. Threats to Validity 83

is not trivial to obtain the answers directly from the book. Still, the usage of Fowler’s

book by students is a possible threat. We relied on two different strategies to alleviate

this threat, i.e., creating not only explicit but also flexible (or open) guidelines. All

students followed these guidelines, and we obtained different results. Particularly, when

following the flexible guidelines, a significant part of them faced problems performing the

refactoring tasks. Third, the Video Store System may represent a nonessential software

project nowadays. We decided to keep this system to preserve consistency with Fowler’s

catalog, which is widely used in Software Engineering courses. In future studies, we plan

to use the new book version [36], which relies on JavaScript and adaption of the system

to another context.

Detection of refactoring operations. We removed a single refactoring operation and

two projects due to compilation errors or false positives. These cases represent a small

piece of the sample. Thus, it is not likely to influence our results. In addition, we

used RefDiff to detect the refactorings [87]. We adopted this tool due to its support to

multiple programming languages. Therefore, it is possible to replicate the study with the

refactorings described in the last edition of Fowler’s book, which relies on JavaScript [36].

It is also possible to adapt the guidelines to other programming languages, such as C [87]

and Go [22].

Student’s mistakes. We used refactoring graphs as a visual instrument to understand

and evaluate the refactoring operations performed by the students. Also, we used a

similarity metric called graph edit distance to compare our ground-truth subgraph with

the students’ subgraphs. For this purpose, we rely on a well-known Python library that

implements this similarity algorithm.2 However, our results also rely on the manual

inspection of the commits of each student. Thus, we reinforce their subjective nature.

The refactoring operations performed by the students (and our analysis) are publicly

available at: github.com/alinebrito/refactoring-graphs-thesis

Generalization of the results. Our guidelines relied on the Java programming language

and on a canonical refactoring example to introduce refactoring concepts, i.e., the Video

Store System proposed by Fowler [35]. Thus, as unusual in empirical software studies,

the results can not be generalized to other scenarios, such as different refactoring tasks

or programming languages.

Sample size and students’ experience. The 46 participants might not be a repre-

sentative sample. However, they have previously studied several topics in the Software

Engineering course (e.g., refactoring, testing, design patterns, and clean code).

2networkx.org/documentation/stable/reference/algorithms/similarity.html

github.com/alinebrito/refactoring-graphs-thesis

4.8. Final Remarks 84

4.8 Final Remarks

In this chapter, we explore the usage of refactoring graphs to represent, visualize,

and assess large refactoring tasks over time. For this purpose, we invited 46 undergraduate

students from a Software Engineering course to refactor a well-known example proposed

by Fowler, a Video Store System [35]. Each student received two groups of refactoring

tasks. The first group included explicit guidelines, i.e., the precise indication of the

piece of code to be refactored and the expected operation. In contrast, the second group

received flexible instructions. Specifically, in this second case, we invited the students to

implement a design pattern without details about the piece of code to be refactored.

The refactoring tasks create a large refactoring subgraph with 24 vertices and 26

edges. The genereration of all refactoring graphs demanded about 18 minutes, i.e, a

median of 23 seconds per student. After building such graphs, we assessed the refactoring

tasks using graph-based metrics and performing visual inspections. We summarize our

findings as follows:

• When following explicit guidelines, most students performed refactoring tasks suc-

cessfully (93.5%). The few mistakes refer to refactorings performed in multiples

commits.

• When following flexible guidelines, most students implemented the proposed de-

sign pattern successfully (70%). However, a significant number of students faced

problems identifying the appropriate refactoring operations.

Based on our results, we provided implications for different scenarios. Specifically,

we discuss our contributions regarding graph-based abstractions to support comprehension

of large and complex refactoring operations. Finally, we argue about a possible thread

in studies based on state-of-the-art mining tools [22, 85, 87, 95, 96], which do not detect

refactoring performed in multiples commits. The dataset is publicly available at: https:

//github.com/alinebrito/refactoring-graphs-thesis

https://github.com/alinebrito/refactoring-graphs-thesis
https://github.com/alinebrito/refactoring-graphs-thesis

85

Chapter 5

A Catalog of Composite Refactorings

In Chapter 3, we observe recurring cases of refactoring operations by inspecting refactoring

subgraphs. For example, developers decompose a method by performing multiple extrac-

tions. We see value investigating such scenarios, since it suggests that some operations

are frequently performed over time. Therefore, we rely on the GSpan algorithm [61, 102]

to mine graph patterns in a dataset of 11,005 GitHub projects.

We do not identify large graph patterns due to the size of the refactoring subgraphs.

There are also irrelevant patterns, such as successive Rename operations. However, we

notice some instances that reinforce our insight. For example, there are recurring cases

of Inline operations to decompose a trivial method. Therefore, inspired by previous re-

sults and perceptions, we rely on refactoring graphs to document a catalog of

high-level code transformations. We focus on sequences of operations to compose or

decompose a program element, which we call composite refactorings [89].

To show the relevance of the proposed catalog, we mine instances of composites in a

representative refactoring oracle with hundreds of confirmed single refactoring operations.

Next, to complement this first study, we search for composites in the full history of ten

well-known open-source projects. We rely on the refactoring graphs model to represent

and document instances from this catalog.

This chapter is organized as follows. Section 5.1 introduces the relevance of con-

ducting this study. Section 5.2 shows a first example of composite refactoring, relying on

refactoring graphs to illustrate it. Section 5.3 shows how to represent composites relying

on refactoring graphs, while Section 5.4 shows a first example of composite refactoring.

We describe the results of the oracle study in Section 5.5, while Section 5.6 includes results

in the wild, covering the full evolution history of ten popular open-source projects. The

results are then discussed in Section 5.7. Section 5.8 states threats to validity. Finally,

we conclude this chapter in Section 5.9.

5.1. Introduction 86

5.1 Introduction

Aiming to promote and facilitate the dissemination of refactoring practice among

developers, refactoring operations are usually documented in catalogs, like the one pro-

posed by Fowler [35, 36] in his seminal book. In this catalog, Fowler provides detailed

documentation about dozens of refactorings, providing a name for each refactoring, de-

scribing the mechanics required to perform the source code transformation, and also giving

illustrative examples of the proposed refactorings. However, most refactorings described

in Fowler’s catalog are restricted in time and scope. Particularly, they are described as

source code transformations that can be performed by a single developer, in a short time

frame (time constraint) and by impacting a limited number of program elements (scope

constraint). This understanding of refactoring is also assumed by modern refactoring de-

tection tools, such as RefactoringMiner [6, 95, 96] and RefDiff [22, 85, 87]. Indeed, these

tools report refactorings at a very fine granularity level. For example, suppose that a

given method m() is implemented in classes A1, A2,. . . , An. Then, suppose that a Pull

Up refactoring is performed to move the replicated method to a superclass B. These tools

report this refactoring as a sequence of the following unrelated operations:

Pull up: A1.m() to B

Pull up: A2.m() to B

Pull up: A3.m() to B

...

However, we claim that the best output would be reporting a single composite

refactoring operation:

Pull up: A1.m(), A2.(), A3.m(), ..., to B

This is just a trivial example of composite refactoring (in Section 5.4 we provide a

more complex example). Indeed, composite refactorings were previously defined by Sousa

et al. [89] as “two or more interrelated refactorings that affect one or more elements”.

However, in their work, the authors focused on the role played by composite refactorings

when removing code smells. In other words, they do not explore, document, and illustrate

a comprehensive catalog of composite refactorings.

In this capther, we initially describe eight composite refactorings in abstract terms.

Then, we look for instances of these catalog in two relevant samples, which are described

bellow. As usually in catalogs, we also include illustrative examples.

Oracle study. In the first study, we mine composites in a large and representative refac-

toring oracle commonly used in the literature [93, 96]. Specifically, we look for occurrences

5.2. An Example of Composite Refactoring 87

of the refactorings in our catalog among 1,7K confirmed single refactoring instances listed

in this oracle. We identify that a significant rate of 60.5% of the refactorings of inter-

est in this oracle are part of composite operations. We also characterize the detected

composites, under dimensions such as size and scope.

Study in the wild. In the oracle study, we rely on a sample that includes selected

refactorings from distinct projects. Therefore, as a complementary analysis, we also look

for composite refactorings in the full history of ten popular GitHub projects. As a result,

we were able to identify and characterize 2,886 instances of composite refactorings.

Contributions: Based on the results described in this chapter, our contributions are

threefold: (1) we propose a comprehensive catalog of composite refactorings; (2) we ex-

plore a second application of refactoring graphs, by using our graph-based abstraction to

illustrate and document the proposed catalog; and (3) we characterize a large sample of

composite refactorings performed in real-world software projects, providing a new view-

point of a well-known refactoring oracle.

5.2 An Example of Composite Refactoring

We rely on refactoring graphs to illustrate the concept of composite refactorings.

Figure 5.1 shows an example from Spring that is based in our graph-based abstraction.

Figure 5.1: Example of composite refactoring from Spring Framework. Method doDispatch
was decomposed by applying six Extract Method refactorings

DispatcherServlet.triggerAfterCompletionWithError

EXTRACT-MOVE
HandlerExecutionChain.applyPostHandle

DispatcherServlet.applyDefaultViewName

DispatcherServlet.processDispatchResult

HandlerExecutionChain.applyPreHandle

DispatcherServlet.triggerAfterCompletion

DispatcherServlet.doDispatch

EXT
RAC

T

EXTR
ACT

EXTRACT

EXTRACT
EXTRACT-MOVE

As we can see, method doDispatch(...) was decomposed by performing six

Extract Method refactorings. Moreover, in two cases the Extract was followed by a Move

5.3. Representing Composites with Refactoring Graphs 88

Method. These operations were performed in a single commit.1

When used in a context like this one, a refactoring detection tool, such as RefD-

iff [22, 85, 87] or RefactoringMiner [95, 96], detects these six single refactorings indepen-

dently. However, it would be interesting to detect a high-level refactoring operation, i.e.,

a composite refactoring grouping the six transformations. As we detailed in the Section

5.4, we call Method Decomposition refactoring, this particular coarse-grained operation.

Techniques that may benefit from the detection of independent refactorings (like

code visualization [4, 17, 68], code review [8, 9, 40, 73, 80], code authorship [7, 44],

bug-introducing detection [58, 78], refactoring-aware tools [23, 84], software mining ap-

proaches [43, 47, 49, 90], to name a few) may also benefit from the detection of composite

refactorings. As refactoring detection is the basis of such techniques, composite refac-

torings would bring to light novel operations not restricted to time and scope, therefore,

better representing the actual source code changes.

Before presenting our catalog, it is important to mention that composite refactor-

ings are not limited to a single commit [89]. For example, as stated by Fowler in the new

version of his book on refactoring [36], there are also long-term refactorings “that can take

a team weeks to complete”.

5.3 Representing Composites with Refactoring

Graphs

In the previous example (Figure 5.1), we show a composite refactoring that includes

nodes representing methods before or after the source code transformation, according to

the definition of refactoring graphs that are described in Chapter 3. However, we also

extend our definition to classes and fields. Specifically, we include new types of nodes in

the graph model, which represents the complete path of these code elements.

In case of composite refactoring representation, there are two typical graph-based

models, which refer to a set of operations to compose or decompose program elements,

as shown in Figure 5.2. For cases involving decomposition of an element, each subgraph

includes a node v that represents the source element, which has in-degree d−(v) = 0 and

out-degree d+(v) ⩾ 2. In other words, two or more edges are leaving from this single

node. The set of vertices u1, u2, ..., un represent the new program elements after applying

the refactoring operation, which are reachable only from node v. In an opposite scenario

involving composition of program elements, the set of vertices u1, u2, ..., un refer to

1github.com/spring-projects/spring-framework/commit/3642b0f3

5.4. Catalog of Composite Refactorings 89

the elements affected by refactoring operations, which were performed to compose the

program element represented by the node v. In this context, d−(v) ⩾ 2 and d+(v) = 0,

i.e., there are two or more edges reaching to v. Finally, the edges hold metadata regarding

the refactoring operations, as previously defined in Chapter 3.

Figure 5.2: Representation of composite refactorings as refactoring graphs. Node v denotes
a program element (class or method) decomposed or composed by a performing a set of
refactoring operations

𝑣

u1

u2

un

𝑣

u1

u2

un

Composition of
program element 𝑣

Existing program
 elements u1, u2…un

New program
 elements u1, u2…un

Decomposition of
program element 𝑣

5.4 Catalog of Composite Refactorings

In this section, we introduce the proposed catalog of composite refactorings. As

customary in refactoring catalogs, we describe the proposed refactoring types and their

mechanics. We also present an abstract example of each composite refactoring, using the

graph-based abstraction described in Chapter 3. There are two main groups of refactor-

ings: (i) to decompose program structures (five composite refactorings), and (ii) to create

program structures (three composite refactorings).

5.4. Catalog of Composite Refactorings 90

5.4.1 Class Decomposition

Motivation: According to Fowler [35, 36], during software evolution we might need to

“move elements around”, aiming to improve modularity and cohesion and reduce coupling.

Specifically, single Move Method operations should be performed “when classes have too

much behavior or when classes are collaborating too much and are too highly coupled”.

However, the overall solution may not be restricted to a single refactoring operation.

Instead, we might need to move more than one method from a single source class. In this

case, we say we performed a composite refactoring named Class Decomposition.

Mechanics: Figure 5.3 shows an example, in which class Foo lost multiple methods to

classes Bar and Baz. The target class can be existing or new. Also, the Move operations

can be followed by a Rename operation. In all cases, the final goal is to decompose the

source class and make its implementation more cohesive. It is also worth noting that our

definition does not require all move operations to be performed in a single commit. In

other words, they can be spread over time, in multiple commits.

Figure 5.3: Class Decomposition

class Foo{
- m1()
- m2()
 ...
- mi()
}

move
class Bar{
+ m1()
+ m2()
 ...
}

class Baz{
+ ni()
 ...

}

move

move and
rename

5.4.2 Method Decomposition

Motivation: We perform Extract Method operations when “you have to spend effort looking

at a fragment of code and figuring out what it’s doing” [35, 36]. In other words, Fowler

advocates the improvement of understandability as the main reason to perform method

extractions. However, the solution does not need to be limited to a sole operation. We

could perform a sequence of two or more Extract Method operations over a single method.

As a result, it generates a simpler one. Evidently, these refactorings also generate new

methods. However, the goal is still the decomposition of the source method. In this case,

we say we performed a composite refactoring named Method Decomposition.

5.4. Catalog of Composite Refactorings 91

Mechanics: Figure 5.4 shows an abstract example, in which methods m1() and m2() were

extracted from method m(). After the extractions, the new methods can be moved to a

distinct class, as happened with m2(). As usual, the operations can be performed in one

or multiple commits.

Figure 5.4: Method Decomposition

class Foo{
m(){

 ...
- ...
- ...

}
+ m1(){
+ ...
+ }
}

class Bar{
+ m2(){
+ ...
+ }
...
}

ext
rac

t

extract
and move

5.4.3 Method Composition

Motivation: Extractions also can be performed to promote reuse and to remove duplica-

tion [35, 36, 86]. Particularly, in such cases, we have similar fragments of code scattered

over multiple locations. Therefore, a single Extract Method operation does not eliminate

the duplicated issue. Instead, it may be necessary to apply multiple extractions to re-

move the duplicated code, generating a new method. In this case, we say we performed

a composite refactoring named Method Composition.

Mechanics: Two or more Extract Method operations are performed over duplicated code,

as illustrated in Figure 5.5. This code is then removed and a new method is created,

with the previously duplicated code. The operations also can be followed by Move Method

operations, i.e., the new method is placed in a distinct class.

Figure 5.5: Method Composition

class Foo{
m3(){

- ...
 ...

}
+ m(){
+ ...
+ }

}

extract and move

class Bar{
m1(){

 ...
- ...
 }

m2(){
 ...
- ...
 }

...
}

ex
tr
ac
t

extract

and move

5.4. Catalog of Composite Refactorings 92

5.4.4 Composite Inline Method

Motivation: Inline Method—as originally proposed in Fowler’s catalog—is reported as the

opposite operation of Extract Method. The author suggests applying a set of Inline Method

operations to remove trivial methods [36]. However, Inline Method is usually detected as a

single operation by current refactoring detection tools [87, 96]. That is, such tools report

independent Inline operations, even when they are part of the same group of operations.

Therefore, we decided to include this refactoring in our catalog, since it matches our

criteria for composite refactorings and is not properly explored and detected by current

tools.

Mechanics: We expand a (simple) method body in its call sites, as shown in Figure 5.6.

Then, we remove the source method. The calls may be located in methods from distinct

classes.

Figure 5.6: Composite Inline Method

class Foo{
- m(){
- ...
- }
 m1(){
+ ...
 ...

 }
}

class Bar{
 m2(){
+ ...
 ...

 }
 m3(){
+ ...
 ...

 }
}

inline

inline

inli
ne

5.4.5 Composite Pull Up Method

Motivation: Fowler also points to the need to move up or down methods in inheritance

hierarchies [36]. In this context, we apply sequences of Pull Up Method to create a single

and more general method in the superclass, therefore achieving code reuse. As in the

case of Inline, we decided to include this refactoring in our catalog mainly because Pull Up

operations are reported as individual and independent operations by current refactoring

detection tools.

Mechanics: This operation refers to sequences of transformations performed to move

methods from subclasses to their superclass. For example, consider a class SuperFoo with

5.4. Catalog of Composite Refactorings 93

subclasses SubFoo1, SubFoo2, and SubFoo3, as presented in Figure 5.7. Suppose that a

Pull Up operation is applied to move method m() from these subclasses to the superclass.

Usually, this operation occurs in a single commit. First, a developer copies the method

m() to the superclass, which can be an existing or new one. After that, the method is

removed from the subclasses. In this context, the following three messages are issued by

RefactoringMiner [96]:

Pull Up Method public m() : void from class SubFoo1

to public m() : void from class SuperFoo

Pull Up Method public m() : void from class SubFoo2

to public m() : void from class SuperFoo

Pull Up Method public m() : void from class SubFoo3

to public m() : void from class SuperFoo

However, since essentially they are part of the same composite refactoring, we claim

these operations should have been reported using a single and comprehensive message,

such as:

Pull Up method public m() : void

From: SubFoo1, SubFoo2, and SubFoo3

To: public m() : void in SuperFoo

Figure 5.7: Composite Pull Up Method

class SuperFoo{
+ m()
 ...
}

class SubFoo1{
- m()
 ...
}

class SubFoo2{
- m()
 ...
}

class SubFoo3{
- m()
 ...
}

pull up pull up pull up

5.4. Catalog of Composite Refactorings 94

5.4.6 Composite Push Down Method

Motivation: As an opposite scenario, we perform Push Down Method when a method is

needed only in a few subclasses [35, 36]. Therefore, this refactoring promotes inheritance

simplification. This operation—also present in Fowler’s catalog—matches our criteria for

composite refactoring. However, as in the case of Pull Up and Inline, it is reported as

independent operations by current refactoring mining tools.

Mechanics: This operation moves a given method from the superclass to particular sub-

classes, as presented in Figure 5.8. After that, the method is removed from the superclass.

Figure 5.8: Composite Push Down Method

class SuperFoo{
- m()
 ...
}

class SubFoo1{
+ m()
 ...
}

class SubFoo2{
+ m()
 ...
}

push down push down

5.4.7 Composite Pull Up Field

Motivation: Often, we have duplicate data in inheritance hierarchies, for example, fields

used for a similar purpose in distinct subclasses. In this case, we can perform a sequence

of Pull Up Field to create a single one in the superclass, aiming to promote reuse [36].

Therefore, this operation also corresponds to our criteria for composite refactoring and

we say we performed a Composite Pull Up Field.

Mechanics: First, we declare the field in the superclass. Then, we remove the declaration

in the subclasses, as shown in Figure 5.9. This operation can also be preceded by Rename

Field, aiming to standardize the names before the movement to the superclass.

5.4. Catalog of Composite Refactorings 95

Figure 5.9: Composite Pull Up Field

class SuperFoo{
+ String a
 ...
}

class SubFoo1{
- String a
 ...
}

class SubFoo2{
- String a
 ...
}

class SubFoo3{
- String a
 ...
}

pull up pull up pull up

5.4.8 Composite Push Down Field

Motivation: Similar to Push Down Method, the goal involves moving data from a super-

class to specific subclasses [36]. When this operation contemplates a sequence of fields

movements, we say we performed a Composite Push Down Field.

Mechanics: First, we declare the field in the required subclasses. Then, we remove the

declaration in the superclass, as shown in Figure 5.10.

Figure 5.10: Composite Push Down Field

class SuperFoo{
- String a
 ...
}

class SubFoo1{
+ String a
 ...
}

class SubFoo2{
+ String a
 ...
}

push down push down

5.4.9 A Final Note on Completeness

The original refactoring catalog proposed by Fowler has dozens of refactorings.

Therefore, the catalog of composites described in this section is much smaller (eight

composites). On the one hand, this difference is expected because composites are coarse-

grained and complex source code transformations, composed by atomic refactorings. On

the other hand, it is also important to acknowledge that we do not claim on the complete-

5.5. A First Oracle of Composite Refactoring 96

ness of the proposed catalog. Indeed, our central intention is to provide a comprehensive,

well-documented, and easy to understand initial list of composite refactorings. In future

studies, we can extend the list to include other types of composites. For example, most

current instances are refactorings at the method level, since they are among the most fre-

quent code elements affected by such operations [87, 96]. However, it is possible to extend

the catalog by including, for example, operations to compose or decompose packages.

5.5 A First Oracle of Composite Refactoring

To investigate whether the proposed composite refactorings occur in real-world

projects, we initially search for composite refactorings in one of the most representative

refactoring oracles in the literature, curated by Tsantalis and other researchers [93, 95, 96].

This oracle has been expanded over the years. The latest version includes more than 14K

refactoring operations from 185 Java projects. The oracle instances were validated by

multiple authors and/or well-known tools. In other words, it is a trustworthy dataset for

studying refactoring practices.

5.5.1 Study Design

Research Questions Assessment

We propose two research questions:

(RQ1) What are the Most Common Composite Refactorings in the Oracle? In the current

version of the oracle, refactoring operations are reported as individual (i.e., non-composite)

ones. Thus, in this first RQ, our goal is to explore the oracle data from a new perspective,

looking for occurrences of composite refactorings. In other words, we aim to provide a new

oracle view, which is not based on individual refactoring operations. For this purpose, we

first compute the frequency (i.e., the number of occurrences) of each composite instance.

(RQ2) What are the Characteristics of Composite Refactorings in the Oracle? The ratio-

nale of this second research question is to understand the main characteristics of the com-

posite refactorings detected in RQ1. Therefore, for each composite instance, we compute

5.5. A First Oracle of Composite Refactoring 97

information such as its scope (i.e., location of the entities before and after a refactoring

operation) and size (i.e., number of individual refactoring operations).

Dataset

In January 2022, we retrieved the most recent oracle version. Then, we selected only

refactoring operations that could be part of composite operations.2 For example,

the original oracle includes refactorings such as Move Attribute and Rename Method, which

are not related at all with the composites described in Section 5.4. As presented in Table

5.1, our oracle sample includes 1,725 individual refactoring instances. Most instances are

Extract Method (976 occurrences) and Move Method operations (227 occurrences).

Table 5.1: Selected refactoring operations in the oracle

Operation Projects Commits Occurrences %

Extract Method 140 329 976 56.6
Move Method 53 73 227 13.2
Inline Method 48 64 127 7.4
Move and Rename Method 29 35 116 6.7
Extract and Move Method 29 35 114 6.6
Pull Up Method 24 28 74 4.3
Push Down Method 10 11 30 1.7
Pull Up Field 14 14 36 2.1
Push Down Field 11 11 25 1.4

All 166 450 1,725 100

These operations are detected in 450 commits from 166 projects, such as Infinis-

pan (a tool for storing, managing, and processing data)3 and Gradle (a build automation

tool).4 Figure 5.11 shows the distribution of the number of selected commits per project.

As we can observe, the median is two commits, while the 90th percentile is about five

commits. In the case of 78 projects (47%), there are only instances from a single commit.

In other words, the oracle sample does not include the whole project’s history.

Figure 5.11: Distribution of commits per project (oracle)

1 2 5 32
Commits

projects

2By construction, the discarded refactorings cannot be part of the composites included in our catalog.
However, we acknowledge they can be part of future composites (in this case, therefore we will need to
update the current oracle).

3https://github.com/infinispan/infinispan
4https://github.com/gradle/gradle

https://github.com/infinispan/infinispan
https://github.com/gradle/gradle

5.5. A First Oracle of Composite Refactoring 98

Detecting Composite Refactorings

We implement a set of scripts to detect the composites described in Section 5.4. Their

input comprises a list of individual refactoring operations. Basically, these scripts operate

by searching for clusters of refactoring operations R1, R2,.., Rn that can be replaced by a

single composite refactoring CR. Therefore, we iterate over the list of refactorings detected

in a system, grouping operations by considering the criteria described in Table 5.2.

Table 5.2: Conditions to cluster two refactoring operations (r1 and r2) into a composite

Composite Condition

Method Composition signature(r1.target) = signature(r2.target) ∧
type(r1.target) = type(r2.target) ∧
(r1.refType, r2.refType) ∈ {extract, extract move}

Method Decomposition signature(r1.source) = signature(r2.source) ∧
type(r1.source) = type(r2.source) ∧
(r1.refType, r2.refType) ∈ {extract, extract move}

Class Decomposition type(r1.source) = type(r2.source) ∧
(r1.refType, r2.refType) ∈ {move,move rename}

Composite Inline Method signature(r1.source) = signature(r2.source) ∧
type(r1.source) = type(r2.source) ∧
(r1.refType, r2.refType) ∈ {inline}

Composite Pull Up Method signature(r1.target) = signature(r2.target) ∧
type(r1.target) = type(r2.target) ∧
(r1.refType, r2.refType) ∈ {pull up}

Composite Push Down Method signature(r1.source) = signature(r2.source) ∧
type(r1.source) = type(r2.source) ∧
(r1.refType, r2.refType) ∈ {push down}

Composite Pull Up Field name(r1.target) = name(r2.target) ∧
type(r1.target) = type(r2.target) ∧
(r1.refType, r2.refType) ∈ {pull up}

Composite Push Down Field name(r1.source) = name(r2.source) ∧
type(r1.source) = type(r2.source) ∧
(r1.refType, r2.refType) ∈ {push down}

r.source program element before a refactoring operation r
r.target program element after a refactoring operation r
r.refType type of a refactoring operation r
signature(m) signature of a method m
name(f) name of a field f
type(e) type of a program element e

For Method Decomposition, Class Decomposition, Composite Push Down Method, Com-

posite Push Down Field, and Composite Inline Method (i.e., operations that break down code

elements), we search for groups of refactorings that have as source the same code element.

For Composite Pull Up Method, Composite Pull Up Field, and Method Composition), we look

for refactorings that have as target the same code element.

Moreover, the source and target checking vary according to each composite refac-

toring. For composites at the level of methods, we verify the signature and the class. For

5.5. A First Oracle of Composite Refactoring 99

example, for Method Composition, we group refactorings r1 and r2 into the same composite

whenever the signature of the target methods are the same (i.e., signature(r1.target) =

signature(r2.target)) and the target methods are in the same class (i.e., type(r1.target) =

type(r2.target)). We also check the respective refactoring types. In the case of Com-

posite Pull Up Field and Composite Push Down Field, i.e, composites at the level of fields,

we verify the field’s name and their respective class. Finally, for Class Decomposition, we

group Move Method operations that originated from the same class (i.e., type(r1.source) =

type(r2.source)).

It is also important to mention that our criteria for grouping refactoring operations

do not include time constraints. Therefore, two or more refactorings can be part of the

same composite, even though they were performed in distinct periods over the system’s

history. We made this decision motivated by two considerations. First, it is not trivial

to set a threshold for the duration of the composites. Second, because our main goal

is to propose a catalog of composites, as well as to mine and analyze examples of these

refactorings, even if they were performed in long time intervals.

After their execution, our scripts produce a list of composite refactorings, including

a textual data and a visualization based on refactoring graphs. To validate the results,

we manually inspected a sample of composite refactorings from the oracle. Specifically,

we execute the following steps for each composite type:

1. We selected a random sample of four instances (of each composite).

2. For each selected instance:

• We carefully analyzed the respective refactorings in the oracle, verifying whether

the operations are correct. In other words, we check the refactoring type,

source, and target, as well as basic information such as project name and com-

mit.

• In the last step, we verify if there are missing refactorings. In other words, we

check if there are operations in the oracle that should be a part of the selected

composite. For example, in neo4j, we detected a Method Composition that

creates the method createCountsTracker() in class CountsComputerTest.5

For this case, we verify if there are extractions to the same target that were

not properly detected by our scripts.

We manually inspected 28 composites, since for Composite Push Down Method and

Composite Push Down Field, we detected only four instances in the oracle. Table 5.3 sum-

marizes the results. The size of the selected composites ranges from 2 to 39 refactoring

operations, covering 160 refactorings from the oracle. Overall, we did not identify errors

5github.com/alinebrito/composite-refactoring-catalog/blob/main/results/oracle/

neo4j/neo4j/results/composition_extract_method/view/subgraph_atomic_4.md

github.com/alinebrito/composite-refactoring-catalog/blob/main/results/oracle/neo4j/neo4j/results/composition_extract_method/view/subgraph_atomic_4.md
github.com/alinebrito/composite-refactoring-catalog/blob/main/results/oracle/neo4j/neo4j/results/composition_extract_method/view/subgraph_atomic_4.md

5.5. A First Oracle of Composite Refactoring 100

by inspecting the sample of composite refactorings. In other words, we do not detect

absent refactoring operations, i.e, operations that were not clustered correctly by our

scripts. The scripts and inspected sample are publicly available at:

https://github.com/alinebrito/refactoring-graphs-thesis

Table 5.3: Inspected sample of composite refactorings (Oracle)

Composite Instances Refactorings

Method Composition 4 48
Method Decomposition 4 22
Class Decomposition 4 52
Inline Method 4 9
Pull Up Method 4 11
Push Down Method 2 4
Composite Pull Up Field 4 10
Composite Push Down Field 2 4

All 28 160

5.5.2 Results

(RQ1) What are the Most Common Composite Refactorings in the Oracle?

Among 1,725 single refactoring operations, an impressive number of 1,043 (60.5%) are

part of composite refactorings, as presented in Table 5.4. For example, 537 Extract Method

or Extract and Move Method are part of Method Composition instances, which is the most

frequent case. There are also significant rates of Method Decomposition (125 occurrences,

34.1%) and Class Decomposition (55 occurrences, 15%). However, composite refactorings

in the inheritance hierarchy are infrequent. For example, there are only 15 composite

refactorings formed by Push Down Method and Pull Up Method operations (4.1%). Also,

there are a few occurrences of composites at the field level.

Overall, we detected 366 composite refactorings over 81 distinct projects. In 39

projects (48.1%), there is only a single composite instance. We identify most cases in a

project called Robovm—127 instances grouping 389 single refactoring operations. Interest-

ingly, this project also includes the largest composite refactoring instance, involving the

composition of a method has(...), which was created as the result of 30 Extract Method

operations.6 The new method contains only a single line of code:

6https://github.com/robovm/robovm/commit/bf5ee44b

https://github.com/alinebrito/refactoring-graphs-thesis
https://github.com/robovm/robovm/commit/bf5ee44b

5.5. A First Oracle of Composite Refactoring 101

Table 5.4: Frequency of composite refactorings (Oracle)

Name Projects
Composites

Operations Occurrences %

Method Composition 37 537 142 38.8
Method Decomposition 37 295 125 34.1
Class Decomposition 37 277 55 15.0
Composite Inline Method 11 48 21 5.7
Composite Pull Up Method 7 33 13 3.6
Composite Push Down Method 2 4 2 0.6
Composite Pull Up Field 4 15 6 1.6
Composite Push Down Field 1 4 2 0.6

All 81 1,043 366 100

public boolean has(CFString key) {

return data.containsKey(key);

}

Therefore, this particular case of Method Composition was performed to remove code

duplication (in this case, represented by a single line of code). It is worth mentioning that

in the original oracle, this information was diluted over 30 individual and disconnected

refactoring operations. By contrast, in our oracle view, they are represented by a single

composite refactoring.

Summary of RQ1: Out of 1,725 single refactoring operations, approximately 60% are

part of composite refactorings. We detected the instances of composite refactoring in 81

projects. The most recurring cases are Method Composition (142 occurrences, 38.8%),

Method Decomposition (125, 34.1%), and Class Decomposition (55, 15%).

(RQ2) What are the Characteristics of Composite Refactorings in the

Oracle?

We also investigate the main characteristics of the composite refactorings detected in RQ1

in terms of size and scope. Regarding their size, i.e., the number of refactoring operations,

most instances are small, as expected. As we can observe in Figure 5.12, about 84% of the

detected composite refactorings have up to three refactoring operations (308 occurrences).

The values range from 2 to 39 refactoring operations per composite.

Next, we detail the results for the most important composites:

Class Decomposition. Among the 55 instances of Class Decomposition, 61.8% refers

to classes losing up to two methods (29 occurrences) or three methods (5 occurrences).

However, this category includes one of the largest composite refactorings in the oracle,

5.5. A First Oracle of Composite Refactoring 102

Figure 5.12: Distribution of the size of composite refactorings (Oracle)

2 3 6 12 24 30
Size

Composites

where a developer from Graphhopper decomposed a class by moving 39 methods.7 In-

terestingly, in the commit message, the developer added a brief description regarding the

motivation, which is related to a well-known design principle (use composition instead of

inheritance [37, 97]):

“Refactoring of [class name]: use composition instead of inheritance”

Method Composition. The size of the 142 instances of Method Composition varies from

2 to 31 operations, with a median of two operations per composite. Furthermore, most

Method Composition instances are intra-class (121 occurrences, 85%), i.e., the source meth-

ods are located in the same class of the target method. Figure 5.13 shows an example from

Neo4j, where a developer extracted a method called createCountsTracker() from six

methods.8 All refactorings happened in the scope of the same class CountsComputerTest.

However, in the original oracle, these refactorings are reported as six distinct and unre-

lated operations. Finally, in 10 cases (7%), the composites are inter-class, i.e., developers

compose methods by “merging” pieces of code coming from distinct classes. The remain-

ing are mixed Method Decomposition, including the two categories.

Figure 5.13: Example of Method Composition from Neo4j (Oracle)

Method
createCountsTracker()

…DenseNodes()

…RelationshipsInTheDB()

…EmptyDatabase()

…RelationshipRecordsInTheDB()

…ThereAreNodesInTheDB()

…UnusedNodeRecordsInTheDB()

extract

extract

extract

extract

extract

extract

Method Decomposition. 95% of the instances of Method Composition (119 occurrences),

which were detected in 37 projects, have up to three operations. The values range from
7https://github.com/graphhopper/graphhopper/commit/7f80425b
8https://github.com/neo4j/neo4j/commit/5fa74fbb

https://github.com/graphhopper/graphhopper/commit/7f80425b
https://github.com/neo4j/neo4j/commit/5fa74fbb

5.6. Composite Refactoring in the Wild 103

2 to 15 operations, distributed among intra-class cases (91%), inter-class cases (3%), and

mixed ones (6%).

Other cases. In the oracle, there are only 127 occurrences of Inline Method. Conse-

quently, we also found a few cases of composite inlines (21 instances, 5.7%), including

at most four operations. The same applies to composite refactorings over inheritance

hierarchies: Composite Pull Up Method (13 instances, 3.6%), Composite Push Down Method

(2 instances, 0.6%), Composite Pull Up Field (6 instances, 1.6%), and Composite Push Down

Field (2 instances, 0.6%).

Summary of RQ2: Most composite refactorings are small, including up to three opera-

tions. However, we also detect large instances, for example, 30 Extract Method operations

to compose a single method. Regarding the scope of the operations, most Method Com-

position and Method Decomposition are intra-class. In other words, developers usually

extract multiple methods to the current classes.

5.6 Composite Refactoring in the Wild

In the first study, we look for composites in a well-known oracle. However, the

refactoring instances selected for this oracle do not cover the complete history of each

project. In other words, the oracle used in Section 5.5 only contains selected refactoring

instances. Therefore, we might have missed operations in the reported composite refac-

torings simply because they were not selected for inclusion in the oracle. To tackle this

issue, we decided to perform a complementary study, in which we search for composite

refactorings in the complete history of ten popular GitHub-based projects.9

5.6.1 Study Design

Research Questions Assessment

As in the study described in Section 5.5, we propose two research questions:

9Since operations at the field level are infrequent, and it is also unsupported by the current RefDiff
tool version, we decide not to include them in this complementary study.

5.6. Composite Refactoring in the Wild 104

(RQ3) What are the Most Common Composite Refactorings in the Wild? Similarly to

RQ1, we assess the frequency of each composite refactoring, but now in 10 popular GitHub

projects.

(RQ4) What are the Characteristics of Composite Refactorings in the Wild? Similarly to

RQ2, the rationale of this research question is to shed light on the main characteristics of

composite refactorings while considering the complete development history of 10 projects.

Dataset

To answer the proposed research questions, we relied on a set of real-world and popular

projects. Specifically, we selected the top-10 Java projects on GitHub, ordered by their

number of stars. We adopted this criterion because stars is a relevant metric to identify

popular repositories [15, 88]. Moreover, in our sample, we only include projects that

are software systems. For example, despite having a high number of stars, we did not

include kdn251/interviews (a guide for interviews),10 and iluwatar/java-design-patterns

(a set of code samples).11 Table 5.5 describes the selected projects, including basic in-

formation, such as number of stars, commits, contributors, and short descriptions. The

selected projects are from distinct domain areas, including web frameworks and animation

libraries.

Table 5.5: Selected Java projects

Project Stars Comm. Contr. Short Description

Spring Boot 56,717 33,692 831 Support framework
Elasticsearch 56,081 60,227 1,651 Analytics engine
RxJava 45,055 5,921 278 Event-based library
Spring Framework 43,943 22,728 551 Support framework
Google Guava 42,045 5,609 265 Core Java libraries
Square Retrofit 38,539 1,902 158 HTTP client
Apache Dubbo 35,968 4,848 349 RPC framework
MPAndroidChart 33,811 2,070 69 Chart library
Lottie Android 31,612 1,321 106 Rendering library
Glide 31,578 2,592 131 Image library

Detecting Composite Refactorings

To detect composite refactorings, we need first to identify single refactoring operations.

For this purpose, we used RefDiff, a well-known multi-language refactoring tool [85, 87],

which is described in Chapter 2. As usual in git-based mining tools, RefDiff detects

refactorings by comparing a commit with its parent commit. To facilitate the usage of

10https://github.com/kdn251/interviews
11https://github.com/iluwatar/java-design-patterns

https://github.com/kdn251/interviews
https://github.com/iluwatar/java-design-patterns

5.6. Composite Refactoring in the Wild 105

the tool, we first implemented a set of scripts that automate tasks such as downloading

GitHub projects and retrieving the list of commits from the default branch. The scripts

then rely on RefDiff to detect single refactoring operations. They also automatically

exclude refactorings in non-core packages, such as “test” and “sample”. The final step

concerns the detection of the composites defined in our catalog, which are represented as

refactoring graphs.

5.6.2 Results

(RQ3) What are the Most Common Composite Refactorings in the Wild?

As presented in Table 5.6, we identify 2,886 occurrences of composite refactorings. Most

cases refer to Class Decomposition (957 occurrences, 33.2%), i.e., 957 classes and interfaces

have lost multiple methods. The values range from 8 classes in Lottie Android to 280 classes

in Elasticsearch.

Table 5.6: Frequency of composite refactorings (in the wild)

Name
Wild Oracle

Occur. % Occur. %

Class Decomposition 957 33.2 55 15.0
Method Decomposition 683 23.7 125 34.1
Method Composition 582 20.2 142 38.8
Composite Pull Up Method 450 15.6 13 3.6
Composite Inline Method 129 4.5 21 5.7
Composite Push Down Method 85 2.8 2 0.6
Composite Pull Up Field - - 6 1.6
Composite Push Down Field - - 2 0.6

All 2,886 100 366 100

Moreover, about 32% of the composites are from Elasticsearch, a popular search

engine.12 In this project, we detect 921 composites grouping 3,310 single refactoring

operations. Among them, most cases refer to Class Decomposition (280 occurrences, 30.4%).

There is also a significant number ofMethod Decomposition (683 occurrences, 23.7%),

such as in the example of Figure 5.14. In this case, method getProperty(List) lost

multiple pieces of code, after a developer performed six Extract and Move operations in a

single commit.

12https://github.com/elastic/elasticsearch

https://github.com/elastic/elasticsearch

5.6. Composite Refactoring in the Wild 106

Figure 5.14: Example of Method Decomposition in Elasticsearch

left()

top()

topLeft()

right()

bottomRight()

bottom()

Method
getProperty(List)

extract and
move

extract and
move

extract and
move

extract and
move

extract and
move

extract and
move

Interestingly, all extracted methods were moved to the same class GeoBoundingBox.

In the commit description,13 the maintainer points out the intention to centralize related

logic:

“A lot of this logic can be centralized instead of having separated efforts to do the same

things”

Summary of RQ3: In our extended dataset, the most common composite refactorings

are Class Decomposition (957 occurrences, 33.2%); Method Decomposition (683 occurrences,

23.7%); and Method Composition (582 occurrences, 20.2%). There are also a few occur-

rences of composite refactorings related to inheritance, i.e., Composite Pull Up Method and

Composite Push Down Method.

Comparison with the oracle results (RQ1): In Table 5.6, we also report the results obtained

with the oracle sample, aiming to facilitate comparison. As we can notice, the frequency

of composites follows a similar tendency, i.e., the top-3 cases are exactly the same: Class

Decomposition, Method Decomposition, and Method Composition. However, in the oracle, the

order is the reverse (e.g., Method Composition is the most frequent composite).

(RQ4) What are the Characteristics of Composite Refactorings in the Wild?

Regarding their size—as measured by the number of single refactorings in each composite—

most instances in the extended dataset are also small. Figure 5.15 presents the size dis-

tribution per project, after removing outliers, since they tend to distort the plot’s aspect.

In all projects, the median is two or three operations. However, there are also large

composites, for example, the largest case includes dozens of operations, in which several

methods were moved from a single class.14 In the following paragraphs, we detail the

characteristics and give examples of each composite refactoring.

13https://github.com/elastic/elasticsearch/commit/769650e0
14https://github.com/ReactiveX/RxJava/commit/10325b90

https://github.com/elastic/elasticsearch/commit/769650e0
https://github.com/ReactiveX/RxJava/commit/10325b90

5.6. Composite Refactoring in the Wild 107

Figure 5.15: Distribution of the size of composite refactorings per project

Spring Boot Elasticsearch RxJava Spring Fram. Guava Retrofit Dubbo MPAndroid Lottie Glide
3

6

9

12

15

18

21

Si
ze

Class Decomposition. Figure 5.16 summarizes the size results of Class Decomposition.

As we can notice, most composites of this type are small. About 62% of the cases

involve up to three operations, such as in the example in Figure 5.17. In this example,

a class of Lottie Android lost three methods in two commits. However, there are also

large instances. For example, in Google Guava one developer moved each method from

class EmptyImmutableMap to a distinct one, i.e., he performed a composite refactoring

composed of ten operations.15

Figure 5.16: Number of operations by composite refactoring (Class Decomposition)

0 50 100 150 200 250 300 350 400
occurrence

6+

5

4

3

2

si
ze

19%

7%

12%

19%

43%

Figure 5.17: Example of Class Decomposition in Lottie Android

move

move

move and
rename

Class
LottieAnimationView

fromInputStream(...)

buildLayersForComposition(...)

clearComposition(...)

Method Decomposition. As in the study described in Section 5.5, we also separate the

composites into intra-class (i.e., extractions to the same class of the fragmented method),
15https://github.com/google/guava/commit/d8f98873

https://github.com/google/guava/commit/d8f98873

5.6. Composite Refactoring in the Wild 108

inter-class (i.e., when the extracted methods are moved to distinct classes), and mixed

(i.e., both cases), as shown in Table 5.7. As we can observe, most extractions are in

the intra-class category (317 occurrences, 46%). However, another significant part of the

results are inter-class (238 occurrences, 35%), i.e., all extracted methods are kept in the

current class. We also investigate the number of extractions, i.e., the size of the Method

Decomposition instances. As presented in Figure 5.18, most cases refer to methods de-

composed using two Extract operations (527 occurrences, 77%) or three operations (108

occurrences, 16%).

Table 5.7: Characteristics of Method Decomposition (in the wild)

Project Occur. Intra-class Inter-class Mixed
Occur. % Occur. % Occur. %

Spring Boot 148 107 72 21 14 20 14
Elasticsearch 234 75 32 118 50 41 18
RxJava 5 2 40 3 60 0 0
Spring Framework 152 77 51 38 25 37 24
Guava 10 3 30 5 50 2 20
Retrofit 6 2 33 2 33 2 33
Dubbo 51 22 43 20 39 9 18
MPAndroidChart 35 5 14 25 71 5 14
Lottie Android 14 5 36 5 36 4 29
Guide 28 19 68 1 4 8 29

All 683 317 46 238 35 128 19

Figure 5.18: Number of operations by composite refactoring (Method Decomposition)

0 100 200 300 400 500
occurrence

5+

4

3

2

si
ze

4%

3%

16%

77%

Method Composition. Among 582 instances of this composite refactoring, frequently,

the extracted code is moved to distinct classes (345 occurrences, 59%), i.e., they are inter-

class, as shown in Table 5.8. Figure 5.19 shows the results considering the size: as we can

observe, most cases involve up to three operations (467 occurrences, 80%). Dubbo includes

an outlier, in which a developer extracted a utility method called isEmptyMap(Map) from

seven other methods.16 The extracted method has the following code:

16https://github.com/apache/dubbo/commit/458a4504

https://github.com/apache/dubbo/commit/458a4504

5.6. Composite Refactoring in the Wild 109

public static boolean isEmptyMap(Map map) {

return map == null || map.size() == 0;

}

Figure 5.19: Number of operations by composite refactoring (Method Composition)

0 50 100 150 200 250 300 350
occurrence

5+

4

3

2
si

ze

14%

6%

15%

65%

Table 5.8: Characteristics of Method Composition (in the wild)

Project Occur. Intra-class Inter-class Mixed
Occur. % Occur. % Occur. %

Spring Boot 79 34 43 42 53 3 4
Elasticsearch 219 49 22 161 74 9 4
RxJava 8 2 25 6 75 0 0
Spring Framework 151 67 44 66 44 18 12
Guava 17 5 29 10 59 2 12
Retrofit 5 1 20 4 80 0 0
Dubbo 39 20 51 15 38 4 10
MPAndroidChart 30 5 17 22 73 3 10
Lottie Android 12 1 8 10 83 1 8
Guide 22 13 59 9 41 0 0

All 582 197 34 345 59 40 7

Composite Pull Up Method. In this category, the number of operations follows the

same tendency detected in RQ2, e.g., most cases comprise two (311 occurrences, 69%)

or three operations (65 occurrences, 15%), as reported in Figure 5.20. However, 8%

of the occurrences have five or more operations. Spring Boot includes an example, in

which a developer moved method matches(...) from five subclasses to the superclass

SpringBootCondition.17 In the commit description, the developer mentioned his inten-

tion, which relates to the improvement of the inheritance hierarchy:

“Create common [name class] base class... This removes the need for [class name] and

simplifies many of the existing condition implementations.”

17https://github.com/spring-projects/spring-boot/commit/840fdeb5

https://github.com/spring-projects/spring-boot/commit/840fdeb5

5.6. Composite Refactoring in the Wild 110

Figure 5.20: Number of operations by composite refactoring (Composite Pull Up Method)

0 50 100 150 200 250 300
occurrence

5+

4

3

2

si
ze

8%

8%

15%

69%

Composite Push Down Method. Figure 5.21 presents the results regarding the size

of this type of composite refactoring. Overall, most cases comprise operations to move a

method to at most three subclasses (82 occurrences, 97%).

Figure 5.21: Size of composite refactorings (Composite Push Down Method)

0 10 20 30 40 50 60 70
occurrence

4+

3

2

si
ze

3%

11%

86%

Composite Inline Method. Regarding the number of affected elements, most Composite

Inline operations involve two or three operations (109 occurrences, 85%), as presented in

Figure 5.22. Elasticsearch includes a large instance, in which a developer removed method

cast(Input, Output) by performing 23 Inline Method operations.18 In the commit de-

scription, the developer explained his motivation in the following way:

“Remove [functionality name] from [class name] as mutable state... this is no longer nec-

essary as each cast is only used directly in the semantic pass after its creation...”

Figure 5.22: Size of composite refactorings (Composite Inline Method)

0 10 20 30 40 50 60 70
occurrence

5+

4

3

2

si
ze

11%

4%

26%

59%

18https://github.com/elastic/elasticsearch/commit/022d3d7d

https://github.com/elastic/elasticsearch/commit/022d3d7d

5.6. Composite Refactoring in the Wild 111

Time span of composites. In the oracle study (Section 5.5), we detect a single com-

posite performed over multiple commits. However, in the wild study, a significant part

of the composites are performed over time (448 instances, 15.5%). In these cases, we

also assess time span by computing the number of days between the most recent and the

oldest operation in a composite. Figure 5.23 shows the distribution of the results. As

we can notice, there are composites performed in a single day (3.3%, 15 composites), but

also there are composites performed over months. Among the 448 composite instances,

75% are performed up to 468 days (about 15 months), with a median time span of 186

days (approximately six months). The 90th percentile is 835 days. However, it is difficult

to generalize these results. For example, open source projects are subjected to multiple

periods of inactivity [28].

Figure 5.23: Distribution of the time span of composite refactorings performed over mul-
tiple commits (wild, 448 instances)

1 186 468 2700
Time span (days)

Composites

Summary of RQ4: In our extended dataset, most composite refactorings are also small,

i.e., they are formed by two or three operations (2,258 composites, 78%). Regarding

the scope of the operations, most Method Decomposition are intra-class (46%), while

most Method Composition are inter-class (59%). In other words, when decomposing

methods, developers usually extract them to their current classes. In contrast, when

removing code duplication, developers frequently extract methods from multiple classes.

Comparison with the oracle results (RQ2): In the study described in Section 5.5, we also

investigate composite characteristics. Regarding the size, the results are similar. For

example, most composites have up to three operations (84% in the oracle vs 78% in the

extended dataset). The notable difference between both datasets refers to composites over

multiple commits. The oracle only contains selected refactoring instances, i.e., it does not

cover the whole projects’ history. Due to this fact, we identified a single composite over

time, i.e., a composite performed over more than one commit. In contrast, in RQ4, we

detect 448 composites spread over two or more commits (15.5%). Finally, regarding the

refactorings’ scope, the results also follow a similar tendency. For example, most Method

Decomposition operations are intra-class in both samples. However, in the oracle, there is

a higher frequency of intra-class operations (91% in the oracle vs 46% in the extended

dataset).

5.7. Discussion and Implications 112

5.7 Discussion and Implications

In this chapter, we proposed a catalog of eight composite refactorings, i.e., refactor-

ing operations composed of simple code transformations. We used the refactoring graphs

to illustrate and document the catalog. Three of these refactorings—Class Decomposi-

tion, Method Decomposition, and Method Composition—are new, in the sense they are not

documented in Fowler’s catalog. The other refactorings—Pull Up Method, Push Down

Method, Pull Up Field, Push Down Field, and Inline Method—are also described in Fowler’s

catalog. However, we decided to include them in our catalog for two key reasons: (a)

they imply the realization of multiple source code transformations that affect multiple

program elements; (b) they are not properly detected by refactoring detection tools, such

as RefactoringMiner [96] and RefDiff [87]. However, to avoid potential conflicts, for these

instances, we added the prefix “Composite” in their names. Regarding their popular-

ity, the three new composites—Class Decomposition, Method Decomposition, and Method

Composition—represent about 77% of the results in the wild study (Section 5.6). In the

oracle study, 88% of the instances refer to these new cases (Section 5.5). These values are

highlighted in Table 5.6.

Essentially, the main contribution of our study is the catalog; the set of scripts to

identify the described composite refactorings; and a new perspective of the well-known

refactoring oracle proposed by Tsantalis and other researchers [93, 96].

We claim this contribution can have two practical implications. First, as usual, our

catalog highlights the importance and existence of composite refactorings. In other words,

a catalog is a fundamental artifact to promote and disseminate the usage of composite

refactorings among software practitioners. In fact, our studies showed that developers rely

on composite refactorings during maintenance tasks. Therefore, the catalog and oracle

can contribute to increasing the usage and application of such refactorings.

As a second practical implication, we showed that composite refactorings are not

properly identified by refactoring detection tools, such as RefactoringMiner [6, 95, 96]

and RefDiff [22, 85, 87]. Typically, these tools detect the parts of composite refactorings

as independent operations. For this reason, we decided to implement a set of scripts to

detect the eight composite refactorings in our catalog. Consequently, we also claim the

concept of composite refactoring can be used to improve the results of empirical software

engineering studies on refactoring practices. Finally, our scripts and catalog can also help

to improve the user experience provided by refactoring-aware code review tools [23], by

supporting the detection of refactorings at a higher abstraction level.

5.8. Threats to Validity 113

5.8 Threats to Validity

Generalization of results. We characterized composite refactorings in terms of size

and location. Our findings are based on a relevant oracle of refactoring operations and

ten real-world Java systems hosted on GitHub. However, they—as common in empirical

software engineering—cannot be generalized to other scenarios, such as closed software

systems or other programming languages.

Catalog of composite refactorings. Our catalog includes eight composite refactorings,

which describe a sequence of operations to compose or decompose source code elements.

We acknowledge that the current version of our catalog is not complete and final. How-

ever, any refactoring catalog can increase over time due to new insights, research, and

development demands. For example, the first catalog proposed by Fowler has 68 refac-

toring operations [35]. After 18 years, in the second edition of his book, he introduced

fifteen new refactorings [36]. We also followed the idea of Fowler’s book [35, 36], using

a single and popular programming language to guide the documentation and to provide

illustrative examples. As mentioned by the author is “better to use a single language so

they can get used to a consistent form of expression”.19 In fact, we plan to extend our

study in the future, by including, for example, composite refactorings at the package level.

We also intend to explore other programming languages and refactoring types.

Detection of single refactorings. Before detecting composite refactorings, we first

need to identify single operations. In our first study—described in Section 5.5—we rely

on a well-known refactoring oracle, in which single refactoring instances were validated

by multiple authors or tools [93, 96]. Therefore, our results are based on a trustworthy

sample. For the second study—described in Section 5.6—we rely on RefDiff [87] to mine

refactorings in ten popular projects. According to recent results, the precision of RefDiff is

high, reaching 96.4% for Java [87]. In this second study, we also cleaned up the dataset, for

example, we remove packages that are not part of the core system (e.g., test, docs, sample),

and we removed constructors since they are essentially initialization structures. Finally,

as natural during software evolution, commits can include temporary or unintentional

operations, such as reverted commits due to test fails and experimental code. To mitigate

this threat, we focus only on the main branch evolution.

Detection of composite refactorings. Regarding composite detection, we implement

a set of scripts, as described in Section 5.5.1. The input comprises a list of single refac-

toring operations, including details such as path, refactoring type, and entities names. A

possible threat is the possibility of errors in the implementation of our tool and parsers.

19https://martinfowler.com/articles/refactoring-2nd-ed.html

https://martinfowler.com/articles/refactoring-2nd-ed.html

5.9. Final Remarks 114

For the oracle analysis, we extract this information from textual data. We also rely on

well-known Python libraries to mitigate this threat, e.g., retrieving the data by regex

expression. Also, we inspected a sample of 28 composite refactorings to check the results

(see details in Section 5.5.1), when we did not identify any error in the process of cluster-

ing refactoring operations as composites. Our verification included 160 single refactoring

operations from the oracle created and curated by Tsantalis et al. [93, 95, 96]. Finally,

we are making publicly available the datasets and scripts used to detect composite refac-

torings.

5.9 Final Remarks

We used refactoring graphs to document a catalog of composite refactorings. Ac-

cording to our definition, a composite refactoring can be spread in multiple commits. Our

catalog includes eight instances that describe sequences of operations that compose or

decompose program elements: Method Composition, Method Decomposition, Class Decom-

position, Composite Pull Up Method, Composite Push Down Method, Composite Pull Up

Field, Composite Push Down Field and Composite Inline Method.

In order to show that the proposed refactorings occur in real-world scenarios, we

searched for occurrences of each instance in two datasets. First, we focus on a well-

known refactoring oracle. In this first study, we identify that about 60% of the se-

lected sample is part of a higher-level composite refactoring. Then, we mine the his-

tory of ten popular GitHub projects, in which we detected 2,886 instances of composite

refactorings. The scripts are publicly available at https://github.com/alinebrito/

refactoring-graphs-thesis

https://github.com/alinebrito/refactoring-graphs-thesis
https://github.com/alinebrito/refactoring-graphs-thesis

115

Chapter 6

Conclusion

This chapter concludes the thesis by discussing the main contributions and prospecting

future works. Specifically, in Section 6.1, we present an overview of this thesis content. We

summarize the results and highlight the main contributions in Section 6.2 while discussing

future research in Section 6.3.

6.1 Thesis Recapitulation

Refactoring is a common and indispensable practice during software evolution.

Developers frequently refactor their code for different proposals [70, 75, 86]. As a conse-

quence, a large number of studies investigate refactoring practices in the last 30 years [1].

However, typically, prior literature does not rely on abstractions to extract, visualize, and

understand refactoring operations performed over time, which is a relevant aspect for re-

searchers and practitioners [4, 14]. In this context, we provided in this thesis a set of three

major studies where we extensively analyzed scenarios involving refactoring practices over

time. For this purpose, we relied on refactoring graphs, the proposed graph-based model.

In Chapter 2, we started by reinforcing the importance of refactoring practices

on software development and evolution. Despite the relevance and vast literature on the

subject, we pointed out possible gaps referring to refactoring operations performed over

time. Essentially, we discussed the need for approaches and abstractions to describe not

only single, but also sequential refactorings as well. Finally, we also confronted this thesis

content with studies that investigate sets of refactorings. We compared our results with

works on batches, composites, and refactoring comprehension.

Next, in Chapter 3, we initially defined refactoring graphs, with the purpose to

understand refactoring operations performed over time. We also reported a large-scale

investigation, in which we mine for occurrences of refactoring graphs in relevant Java and

JavaScript projects. Overall, we observed that most instances are small, including up to

four operations. However, we also identified large subgraphs, involving dozens of opera-

6.1. Thesis Recapitulation 116

tions. Aiming to investigate such cases, we complemented our study with a qualitative

analysis by asking developers about the reasons behind their operations. The results from

the qualitative part reinforce findings from the recent literature, i.e., developers frequently

refactor their code to fix bugs or improve existing features, and code design improvement.

Regarding other characteristics, most refactoring graphs have up to three commits, span

from few days to months, and they are heterogeneous, i.e., involving distinct types of

refactoring. Therefore, we show the importance of investigating refactorings from an-

other perspective, i.e., beyond individual operations. We also reinforced the usefulness of

the proposed graph-based abstraction to visualize and mine refactorings performed over

time.

Finally, in the subsequent chapters, we investigated applications for refactoring

graphs. In other words, we conducted studies using our graph based-model as a key data

structure to visualize, understand, and represent refactoring operations. First, in Chapter

4, we relied on refactoring graphs to evaluate refactoring tasks performed by undergrad-

uate students from a Software Engineering course. Specifically, we performed a manual

inspection and also used a graph-based metric to compute similarity. Therefore, we ex-

plored a first application to our model. It may be a useful data structure to understand

and visualize refactoring tasks. Next, in Chapter 5, we investigated a second application

for refactoring graphs by documenting sequences of refactorings performed over a given

program element, i.e., a catalog of composite refactorings. We discussed the relevance of

catalogs of refactorings to guide developers and research. Also, we point out limitations

of existing catalogs and tools, which most cases focus on single refactoring operations. In

general, we obtained interesting results. We show, for example, that a significant rate of

operations identified as singles ones by refactoring detection tools, are actually compos-

ite operations. We also mined dozens of instances of composites in projects hosted on

GitHub.

6.2. Contributions 117

6.2 Contributions

We summarize our contributions as follows:

• We proposed a new abstraction named refactoring graphs, aiming to support

studies on refactoring performed over time. Large, complex, and sequential refac-

toring tasks are a challenge reported by the recent literature [4]. We claim that the

proposed graph-based model is a useful data structure for studies in such scenarios.

• Using our graph-based model, we quantitatively and qualitatively characterized

a large sample of approximately 1.5K sequences of refactoring opera-

tions performed over time in two popular programming languages, Java and

JavaScript. We showed characteristics referring to size, location, timespan, and

graph patterns. We also investigate the main reasons behind the large graphs from

our sample. The results suggest that there is another perspective, which does not

involve only single refactoring operations. Moreover, we also reinforce the relevance

of refactoring graphs to mine and represent operations performed over time.

• We extend the existing datasets of refactoring with new instances or per-

spectives. Specifically, we provide a new evaluation of the precision of RefD-

iff [85, 87], which is the tool we used to detect refactoring operations. The eval-

uation relies on real-world Java and JavaScript open-source projects, comprising

690 single refactoring instances. We also show a new perspective to one of the

most relevant refactoring oracles, which has been curated by Tsantalis and other

researchers [93, 95, 96]. In this case, we show that there is a significant rate of

composite refactorings in this dataset, which are reported as single ones.

• We complemented research on refactoring practices, relying on refactoring

graphs to investigate distinct fields of study. First, we complement studies on se-

quences of refactoring operations by proposing a catalog of composite refactorings.

Refactoring catalogs are relevant instruments to guide developers and researchers.

We mined real-world instances of the proposed catalog and we also reported implica-

tions regarding single and composite refactorings. Second, we complement research

on the educational side by conducting studies with undergraduate students on a

Software Engineering course. In this case, we discussed the need for approaches to

teach, visualize, and evaluate refactoring practices. Third, we characterized a large

sample of refactoring operations performed over time. We mined hundreds of se-

quences of refactoring operations, showing that when we focus on single operations,

we do not contemplate the complete scenario.

6.3. Future Work 118

• We provided a research compendium that is publicly available at https://

github.com/alinebrito/refactoring-graphs-thesis. It includes a collection

of scripts, metadata, and documentation referring to the results reported in this

Ph.D. thesis, allowing, for instance, to detect refactoring graphs and visualize the

results reported over the chapters.

• We designed and implemented a web application to easily visualize refactor-

ing graphs: https://refactoring-graph.github.io. Therefore, we provide a

visual option to support the comprehension of the results reported in this thesis.

Essentially, the application allows us to visualize the refactoring graphs reported in

Chapter 3.

6.3 Future Work

Throughout this thesis, we defined and characterized the proposed graph-based ab-

straction named refactoring graphs. We also presented applications involving the graph

model. Specifically, we performed a study using refactoring graphs to understand refactor-

ing tasks performed by students, and also a second investigation using refactoring graphs

to document a catalog of composite refactorings. During the investigations, we envision

new fields of study contemplating sequences of refactoring operations. We prospect about

these topics in the following paragraphs.

Tactical Forking. Usually, companies work with multiple teams. Sometimes, they

operate in the same core system, which is part of multiple systems in the com-

pany. This practice requires intense coordination. For example, developers could

frequently deal with blocking contributions or issues due to changes performed by

another team. Aiming to mitigate this effort during the software evolution, they can

rely on Tactical Forkings.1 Tactical Forking consists of creating an independent fork.

In other words, the team decouples a version of the core system from the codebase

and other copies. Then, they perform constant refactoring operations to eliminate

and adapt the code to their personal needs. The goal is to eliminate or decompose

unnecessary parts of the software system, creating a simpler and more compact one.

This strategy can also support the migration from monolithic architectures to mi-

croservices. In this context, a vital part of the work involves applying sequences of

refactoring operations after the fork from the codebase, which might be composite

1faustodelatog.wordpress.com/2020/10/16/tactical-forking

https://github.com/alinebrito/refactoring-graphs-thesis
https://github.com/alinebrito/refactoring-graphs-thesis
https://refactoring-graph.github.io
faustodelatog.wordpress.com/2020/10/16/tactical-forking

6.3. Future Work 119

refactorings. However, to the best of our knowledge, guidelines to perform tactical

forkings are nor deeply explored in the literature. In this way, as future work, we

suggest an extension of the catalog of composite refactorings proposed in Chapter

5, focusing on sequences of operations common when performing tactical forkings.

Exploring Other Research Methodologies. This thesis includes qualitative analysis

aiming to understand and show the relevance of refactoring graphs. Specifically, in

Chapter 3, we sent emails to developers asking about the motivations behind large

refactoring subgraphs. Also, in Chapter 4, we used refactoring graphs to visualize

refactoring tasks performed by students, in which we show a first application for

the proposed graph-based model. However, other methodologies could have been

used in these studies, gathering more complete responses and new perspectives. For

example, it is possible to conduct semi-structured interviews with developers, edu-

cators, and students regarding the use of refactoring graphs to understand complex

refactoring tasks.

Refactoring understanding and visualization. In Chapter 4, we explored the usage

of refactoring graphs to represent, visualize, and assess large refactoring tasks over

time. Specifically, we investigate refactoring operations performed by undergraduate

students from a Software Engineering course. We argue that the proposed graph-

based model may be used to provide easy navigation on large refactoring operations,

since it is possible, for example, to inspect entity names, visualize sequences of

refactoring tasks, and organize multiple operations. In fact, visualization tools and

techniques are frequently reported as useful by practitioners [4, 10, 24, 60, 68, 100].

The literature also shows that cognitive information is helpful in educational ac-

tivities [68, 100, 101, 103]. In other words, visual perception improves code com-

prehension tasks. In the particular context of refactoring, for example, mining and

managing complex refactoring talks is a hurdle recently pointed out in the litera-

ture [4].

Ecosystems and Programming Languages. Most studies on refactorings focus on

the Java programming language, ranging from empirical investigations [12, 75, 86,

89] to refactoring tools [16, 85, 96]. However, the software industry has been adopt-

ing other popular languages, such as JavaScript, Python, and Go.2 As a conse-

quence, we observe an effort in recent tools and techniques to support refactoring

performed in multiple programming languages [6, 22, 87]. We notice the same in

academia. For example, the current version of Fowler’s book uses JavaScript to

describe the catalog of refactoring operations [36]. In this PhD thesis, specifically in

Chapter 3, we explore refactoring performed over time in Java and JavaScript, com-

2survey.stackoverflow.co/2022

survey.stackoverflow.co/2022

6.3. Future Work 120

plementing this gap in research using dynamic and untyped programming languages.

Still, we envision new studies to complement the perspectives of this thesis content.

Therefore, we suggest investigating applications of refactoring graphs beyond Java,

as well as studies about the frequency and impact of refactoring performed over

time in distinct environments.

Source Code Histories. Source code history is a relevant resource to investigate

refactoring development practices, understand the evolution of a piece of code or

element [43], and it is also used by software mining tools and techniques [30, 72, 90].

In current version control systems (VCS), such as git, it may be harder to under-

stand performed changes, since they trace and show the modifications at the line

level. Sometimes, refactoring also impacts the process by breaking the code element

history. For example, a Move Method operation makes tracking more difficult, since

a GitHub diff does not precisely identify the movement. It reports the removal of

a method and the addition of a new one. Due to this fact, recent studies intro-

duce new strategies to track code changes. Among them, there are CodeShovel [43]

and FinerGit [47], which track the changes at the method level. In this thesis,

we envision the use of our graph-based model to overcome a limitation on these

approaches. Specifically, the use of refactoring graphs to solve issues regarding the

creation of method histories as a sequential line. CodeShovel and FinerGit do not

cover the whole scenario. For example, it is possible to extract multiple methods

from a single one. Therefore, for multiple instances, the history of a method is not

a sequential line. Notice that this is not a particular behavior of extract operations:

as mentioned in Chapter 5, other refactorings also produce multiple elements. In-

terestingly, a recent tool called CodeTracker [52] solved this issue by relying on a

graph-based design, which reinforces our observations. However, it is still possible

to improve these solutions, considering other fine-grained code histories, such as

refactoring at field level and internal refactorings.

Changes in code blocks. The graph model defined in Chapter 3 focuses on method

level, i.e., refactoring operations whose the target and the source are methods. We

also discussed the extension to other code elements, such classes and fields. In fact,

it was performed when documenting a catalog of composite refactorings in Chapter

5. However, refactoring graphs do not provide a useful representation to internal

operations, i.e., refactorings inside the same code element. For instance, Replace

Temp with Query—a refactoring cataloged in Fowler’s books—involves extracting

a method and replacing a temporary variable by calling an extracted method. Sim-

ilarly, other changes happen inside methods, involving mixed internal and exter-

nal movements. For example, the current version of RefactoringMiner [96] detects

refactorings involving loops. Therefore, we also suggest investigations regarding new

6.3. Future Work 121

graph-based designs or structures to represent these categories of code changes.

122

Bibliography

[1] Abid, C., Alizadeh, V., Kessentini, M., Ferreira, T., and Dig, D. 30 years of software

refactoring research: A systematic literature review. ArXiv, abs/2007.02194, 2020.

[2] Abid, S., Abdul Basit, H., and Arshad, N. Reflections on teaching refactoring: A

tale of two projects. In 20th ACM Conference on Innovation and Technology in

Computer Science Education (ITiCSE), page 225–230, 2015.

[3] Agrahari, V. and Chimalakonda, S. Refactor4green: A game for novice programmers

to learn code smells. In 42nd International Conference on Software Engineering:

Companion Proceedings (ICSE-Companion), pages 324–325, 2020.

[4] AlOmar, E., Mkaouer, M., and Ouni, A. Knowledge Management in the Develop-

ment of Data-Intensive Systems, chapter Mining and Managing Big Data Refactor-

ing for Design Improvement: Are We There Yet? Auerbach Publications, 2021.

[5] AlOmar, E. A., Mkaouer, M. W., and Ouni, A. Toward the automatic classification

of self-affirmed refactoring. Journal of Systems and Software (JSS), 171:110821,

2021.

[6] Atwi, H., Lin, B., Tsantalis, N., Kashiwa, Y., Kamei, Y., Ubayashi, N., Bavota,

G., and Lanza, M. PYREF: Refactoring detection in python projects. In 21st

IEEE International Working Conference on Source Code Analysis and Manipula-

tion,Engineering Track (SCAM), pages 136–141, 2021.

[7] Avelino, G., Passos, L., Hora, A., and Valente, M. T. A novel approach for esti-

mating truck factors. In 24th International Conference on Program Comprehension

(ICPC), pages 1–10, 2016.

[8] Bacchelli, A. and Bird, C. Expectations, outcomes, and challenges of modern code

review. In 35th International Conference on Software Engineering (ICSE), pages

712–721, 2013.

[9] Bacchelli, A. and Bird, C. Expectations, outcomes, and challenges of modern code

review. In 35th International Conference on Software Engineering (ICSE), pages

712–721, 2013.

[10] Bassil, S. and Keller, R. K. Software visualization tools: survey and analysis. In 9th

International Workshop on Program Comprehension (IWPC), pages 7–17, 2001.

Bibliography 123

[11] Bibiano, A., Soares, V., Coutinho, D., Fernandes, E., Correia, J., Santos, K.,

Oliveira, A., Garcia, A., Gheyi, R., BaldoinoFonseca, Ribeiro, M., Silva, C., and

Oliveira, D. How does incomplete composite refactoring affect internal quality at-

tributes. In 28th International Conference on Program Comprehension (ICPC),

pages 149–159, 2020.

[12] Bibiano, A. C., Garcia, E. F. D. O. A., Kalinowski, M., Fonseca, B., Oliveira, R.,

Oliveira, A., and Cedrim, D. A quantitative study on characteristics and effect of

batch refactoring on code smells. In 13th International Symposium on Empirical

Software Engineering and Measurement (ESEM), pages 1–11, 2019.

[13] Bibiano, A. C., Assunção, W., Coutinho, D., Santos, K., Soares, V., Gheyi, R., Gar-

cia, A., Fonseca, B., Ribeiro, M., Daniel Oliveira, C. B., Marques, J. L., and Oliveira,

A. Look ahead! revealing complete composite refactorings and their smelliness ef-

fects. In 37th International Conference on Software Maintenance and Evolution

(ICSME), pages 298–308, 2021.

[14] Bogart, A., AlOmar, E. A., Mkaouer, M. W., and Ouni, A. Increasing the trust

in refactoring through visualization. In 42nd International Conference on Software

Engineering Workshops (ICSEW), pages 334–341, 2020.

[15] Borges, H., Hora, A., and Valente, M. T. Understanding the factors that impact the

popularity of GitHub repositories. In 32nd International Conference on Software

Maintenance and Evolution (ICSME), pages 334–344, 2016.

[16] Brito, A., Xavier, L., Hora, A., and Valente, M. T. APIDiff: Detecting API breaking

changes. In 25th International Conference on Software Analysis, Evolution and

Reengineering (SANER), Tool Track, pages 507–511, 2018.

[17] Brito, A., Hora, A., and Valente, M. T. Refactoring graphs: Assessing refactoring

over time. In 27th International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 367–377, 2020. doi: 10.1109/SANER48275.2020.

9054864.

[18] Brito, A., Valente, M. T., Xavier, L., and Hora, A. You broke my code: Understand-

ing the motivations for breaking changes in APIs. Empirical Software Engineering,

25:1458–1492, 2020. doi: 10.1007/s10664-019-09756-z.

[19] Brito, A., Hora, A., and Valente, M. T. Characterizing refactoring graphs in Java

and JavaScript projects. Empirical Software Engineering, 26, 2021. doi: 10.1007/

s10664-021-10023-3.

Bibliography 124

[20] Brito, A., Hora, A., and Valente, M. T. Understanding refactoring tasks over time:

A study using refactoring graphs. In 25th Ibero-American Conference on Software

Engineering (CIbSE), pages 330–344, 2022. doi: 10.5753/cibse.2022.20982.

[21] Brito, A., Hora, A., and Valente, M. T. Towards a catalog of composite refactorings.

Journal of Software: Evolution and Process, e2530, 2023. doi: 10.1002/smr.2530.

[22] Brito, R. and Valente, M. T. RefDiff4Go: Detecting refactorings in Go. In

14th Brazilian Symposium on Software Components, Architectures, and Reuse (SB-

CARS), pages 101–110, 2020.

[23] Brito, R. and Valente, M. T. RAID - Refactoring aware and intelligent diffs. In

29th International Conference on Program Comprehension (ICPC), pages 265–275,

2021.

[24] Brito, R., Brito, A., Brito, G., and Valente, M. T. GoCity: Code city for Go. In

26th International Conference on Software Analysis, Evolution and Reengineering

(SANER), Tool Track, pages 649–653, 2019.

[25] Catolino, G., Palomba, F., Tamburri, D. A., Serebrenik, A., and Ferrucci, F. Refac-

toring community smells in the wild: The practitioner’s field manual. In 42nd In-

ternational Conference on Software Engineering: Companion Proceedings (ICSE),

pages 25–34, 2020.

[26] Cedrim, D. Understanding and improving batch refactoring in software systems.

PhD thesis, PUC-Rio, 2018.

[27] Chen, T.-H., Nagappan, M., Shihab, E., and Hassan, A. E. An empirical study

of dormant bugs. In 11th Working Conference on Mining Software Repositories

(MSR), pages 82–91, 2014.

[28] Coelho, J., Valente, M. T., Milen, L., and Silva, L. L. Is this GitHub project

maintained? measuring the level of maintenance activity of open-source projects.

Information and Software Technology, 1:1–35, 2020.

[29] Cruzes, D. S. and Dyba, T. Recommended steps for thematic synthesis in software

engineering. In 5th International Symposium on Empirical Software Engineering

and Measurement (ESEM), pages 275–284, 2011.

[30] da Costa, D. A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R., and Hassan,

A. E. A framework for evaluating the results of the SZZ approach for identifying

bug-introducing changes. Transactions on Software Engineering, 43(7):641–657,

2017.

Bibliography 125

[31] Demeyer, S., Van Rysselberghe, F., Girba, T., Ratzinger, J., Marinescu, R., Mens,

T., Du Bois, B., Janssens, D., Ducasse, S., Lanza, M., Rieger, M., Gall, H., and

El-Ramly, M. The LAN-simulation: a refactoring teaching example. In 8th Inter-

national Workshop on Principles of Software Evolution (IWPSE), pages 123–131,

2005.

[32] Di Penta, M., Bavota, G., and Zampetti, F. On the relationship between refactoring

actions and bugs: A differentiated replication. In 28th European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering (FSE),

pages 556–567, 2020.

[33] Dig, D., Comertoglu, C., Marinov, D., and Johnson, R. Automated detection

of refactorings in evolving components. In 20th European Conference on Object-

Oriented Programming (ECOOP), pages 404–428, 2006.

[34] El-Ramly, M. Experience in teaching a software reengineering course. In 28th

International Conference on Software Engineering (ICSE), page 699–702, 2006.

[35] Fowler, M. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999.

[36] Fowler, M. Refactoring: improving the design of existing code. Addison-Wesley,

2018.

[37] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

[38] Ge, X., Sarkar, S., Witschey, J., and Murphy-Hill, E. Refactoring-aware code

review. In Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pages 71–79, 2017.

[39] Ge, X., Sarkar, S., and Murphy-Hill, E. Towards refactoring-aware code review. In

7th International Workshop on Cooperative and Human Aspects of Software Engi-

neering (CHASE), pages 99–102. ACM, 2014.

[40] Ge, X., Sarkar, S., Witschey, J., and Murphy-Hill, E. Refactoring-aware code review.

In Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

pages 71–79, 2017.

[41] Gómez, V. U., Ducasse, S., and D’Hondt, T. Visually supporting source code

changes integration: the Torch dashboard. In 17th Working Conference on Reverse

Engineering (WCRE), pages 55–64, 2010.

[42] Gómez, V. U., Ducasse, S., and D’Hondt, T. Visually characterizing source code

changes. Science of Computer Programming, 98(P3):376–393, 2015.

Bibliography 126

[43] Grund, F., Chowdhury, S., Bradley, N., Hall, B., and Holmes, R. CodeShovel:

Constructing method-level source code histories. In 43rd International Conference

on Software Engineering: Companion Proceedings (ICSE), pages 1510–1522, 2021.

[44] Hattori, L. and Lanza, M. Mining the history of synchronous changes to refine code

ownership. In 6th International Working Conference on Mining Software Reposito-

ries (MSR), pages 141–150, 2009.

[45] Hayashi, S., Thangthumachit, S., and Saeki, M. Rediffs: Refactoring-aware differ-

ence viewer for Java. In 20th Working Conference on Reverse Engineering (WCRE),

pages 487–488, 2013.

[46] Hebig, R., Ho-Quang, T., Jolak, R., Schröder, J., Linero, H., Ågren, M., and Maro,

S. H. How do students experience and judge software comprehension techniques? In

28th International Conference on Program Comprehension (ICPC), page 425–435,

2020.

[47] Higo, Y., Hayashi, S., and Kusumoto, S. On tracking Java methods with git mech-

anisms. Journal of Systems and Software (JSS), 165, 2020.

[48] Hora, A. and Robbes, R. Characteristics of method extractions in java: A large

scale empirical study. Empirical Software Engineering, 25:1798–1833, 2020.

[49] Hora, A., Silva, D., Robbes, R., and Valente, M. T. Assessing the threat of un-

tracked changes in software evolution. In 40th International Conference on Software

Engineering (ICSE), pages 1102–1113, 2018.

[50] Iammarino, M., Zampetti, F., Aversano, L., and Penta, M. D. Self-admitted tech-

nical debt removal and refactoring actions: Co-occurrence or more? In 35th In-

ternational Conference on Software Maintenance and Evolution (ICSME), pages

186–190, 2019.

[51] Jiang, Y., Liu, H., Niu, N., Zhang, L., and Hu, Y. Extracting concise bug-fixing

patches from human-written patches in version control systems. In 43rd Interna-

tional Conference on Software Engineering (ICSE), pages 686–698, 2021.

[52] Jodavi, M. and Tsantalis, N. Accurate method and variable tracking in commit his-

tory. In 30th Software Engineering Conference and Symposium on the Foundations

of Software Engineering (FSE), pages 183–195, 2022.

[53] Karac, E. I., Turhan, B., and Juristo, N. A controlled experiment with novice

developers on the impact of task description granularity on software quality in test-

driven development. IEEE Transactions on Software Engineering (TSE), pages

1–16, 2019.

Bibliography 127

[54] Keuning, H., Heeren, B., and Jeuring, J. Student refactoring behaviour in a pro-

gramming tutor. In 20th Koli Calling International Conference on Computing Ed-

ucation Research (Koli Calling), pages 1–10, 2020.

[55] Kim, M., Gee, M., Loh, A., and Rachatasumrit, N. Ref-finder: a refactoring recon-

struction tool based on logic query templates. In 8th International Symposium on

Foundations of software engineering (FSE), pages 371–372, 2010.

[56] Kim, M., Zimmermann, T., and Nagappan, N. A field study of refactoring challenges

and benefits. In 20th International Symposium on the Foundations of Software

Engineering (FSE), pages 50:1–50:11, 2012.

[57] Kim, M., Zimmermann, T., and Nagappan, N. An empirical study of refactoring

challenge and benefits at Microsoft. Transactions on Software Engineering, 40(7):

633–649, 2014.

[58] Kim, S., Zimmermann, T., Pan, K., and Whitehead, E. J. J. Automatic identifi-

cation of bug-introducing changes. In 21st International Conference on Automated

Software Engineering (ASE), pages 81–90, 2006.

[59] Kononenko, O., Baysal, O., and Godfrey, M. W. Code review quality: How de-

velopers see it. In 38th International Conference on Software Engineering (ICSE),

pages 1028–1038, 2016. doi: 10.1145/2884781.2884840.

[60] Koschke, R. Software visualization in software maintenance, reverse engineering,

and re-engineering: a research survey. Journal of Software Maintenance and Evo-

lution: Research and Practice (JSME), 15(2):87–109, 2003.

[61] Leung, C. Technical notes on extending gSpan to directed graphs. Technical report,

Singapore Management University, 2010.

[62] Li, H. and Thompson, S. A domain-specific language for scripting refactorings in

erlang. In 15th Fundamental Approaches to Software Engineering (FASE), pages

501–515, 2012.

[63] López, C., Alonso, J. M., Marticorena, R., and Maudes, J. M. Design of e-activities

for the learning of code refactoring tasks. In 2014 16th International Symposium

on Computers in Education (SIIE), pages 35–40, 2014. doi: 10.1109/SIIE.2014.

7017701.

[64] Mahmoudi, M., Nadi, S., and Tsantalis, N. Are refactorings to blame? an empir-

ical study of refactorings in merge conflicts. In 26th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 151–162, 2019.

Bibliography 128

[65] Mazinanian, D., Ketkar, A., Tsantalis, N., and Dig, D. Understanding the use of

lambda expressions in Java. Programming Languages, 1(85):85:1–85:31, 2017.

[66] Meananeatra, P. Identifying refactoring sequences for improving software main-

tainability. In 27th International Conference on Automated Software Engineering

(ASE), pages 406–409, 2012.

[67] Meneely, A. and Williams, O. Interactive churn metrics: socio-technical variants of

code churn. Software Engineering Notes, 37(6), 2012.

[68] Merino, L., Ghafari, M., Anslow, C., and Nierstrasz, O. A systematic literature

review of software visualization evaluation. Journal of Systems and Software (JSS),

144:165–180, 2018.

[69] Murphy-Hill, E., Parnin, C., and Black, A. P. How we refactor, and how we know

it. Transactions on Software Engineering, 38(1):5–18, 2012.

[70] Murphy-Hill, E., Parnin, C., and Black, A. P. How we refactor, and how we know it.

In 31st International Conference on Software Engineering (ICSE), pages 287–297,

2009.

[71] Negara, S., Chen, N., Vakilian, M., Johnson, R. E., and Dig, D. A comparative

study of manual and automated refactorings. In 27th European Conference on

Object-Oriented Programming (ECOOP), pages 552–576, 2013.

[72] Neto, E. C. and da Costa andUirá Kulesza, D. A. The impact of refactoring changes

on the SZZ algorithm: An empirical study. In 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 380–390, 2018.

[73] Paixao, M., Uchôa, A., Bibiano, A. C., Oliveira, D., Garcia, A., Krinke, J., and

Arvonio, E. Behind the intents: An in-depth empirical study on software refactor-

ing in modern code review. In 17th International Conference on Mining Software

Repositories (MSR), pages 125–136, 2020.

[74] Palomba, F., Zaidman, A., Oliveto, R., and Lucia, A. D. An exploratory study on

the relationship between changes and refactoring. In 25th International Conference

on Program Comprehension (ICPC), pages 176–185, 2017.

[75] Pantiuchina, J., Zampetti, F., Scalabrino, S., Piantadosi, V., Oliveto, R., Bavota,

G., and Penta, M. D. Why developers refactor source code: A mining-based study.

ACM Transactions on Software Engineering and Methodology, 37(4):1–32, 2020.

[76] Peruma, A., Mkaouer, M., Decker, M., and Newman, C. An empirical investigation

of how and why developers rename identifiers. In 2nd International Workshop on

Refactoring (IWoR), pages 26–33, 2018.

Bibliography 129

[77] Rahman, F. and Devanbu, P. Ownership, experience and defects: a fine-grained

study of authorship. In 33rd International Conference on Software Engineering

(ICSE), pages 491–500, 2011.

[78] Rahman, F., Posnett, D., Hindle, A., Barr, E., and Devanbu, P. BugCache for

inspections: hit or miss? In 19th International Symposium on the Foundations of

Software Engineering (FSE), pages 322–331, 2011.

[79] Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., and Devanbu, P.

On the naturalness of buggy code. In 38th International Conference on Software

Engineering (ICSE), pages 428–439, 2016.

[80] Sadowski, C., Söderberg, E., Church, L., Sipko, M., and Bacchelli, A. Modern

code review: A case study at Google. In 40th International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP), pages 181–190, 2018.

[81] Sanfeliu, A. and Fu, K.-S. A distance measure between attributed relational graphs

for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics

(SMC), SMC-13(3):353–362, 1983.

[82] Sellitto, G., Iannone, E., Codabux, Z., Lenarduzzi, V., Lucia, A. D., Palomba,

F., and Ferrucci1, F. Toward understanding the impact of refactoring on program

comprehension. In 29th International Conference on Software Analysis, Evolution,

and Reengineering (SANER), pages 731–742, 2022.

[83] Shen, B., Zhang, W., Zhao, H., Liang, G., Jin, Z., and Wang, Q. IntelliMerge:

A refactoring-aware software merging technique. Programming Languages, 3(170):

170:1–170:28, 2019.

[84] Shen, B., Zhang, W., Zhao, H., Liang, G., Jin, Z., and Wang, Q. IntelliMerge:

A refactoring-aware software merging technique. Programming Languages, 3(170):

170:1–170:28, 2019.

[85] Silva, D. and Valente, M. T. RefDiff: Detecting refactorings in version histories.

In 14th International Conference on Mining Software Repositories (MSR), pages

269–279, 2017.

[86] Silva, D., Tsantalis, N., and Valente, M. T. Why we refactor? Confessions of GitHub

contributors. In 24th International Symposium on the Foundations of Software

Engineering (FSE), pages 858–870, 2016.

[87] Silva, D., da Silva, J. P., Santos, G., Terra, R., and Valente, M. T. Refdiff 2.0:

A multi-language refactoring detection tool. IEEE Transactions on Software Engi-

neering, 47(12):2786–2802, 2021.

Bibliography 130

[88] Silva, H. and Valente, M. T. What’s in a GitHub star? Understanding repository

starring practices in a social coding platform. Journal of Systems and Software,

146:112–129, 2018.

[89] Sousa, L., Cedrim, D., Garcia, A., Oizumi, W., Bibiano, A. C., Oliveira, D., Kim,

M., and Oliveira, A. Characterizing and identifying composite refactorings: Con-

cepts, heuristics and patterns. In 17th International Conference on Mining Software

Repositories (MSR), page 186–197, 2020.

[90] Spadini, D., Aniche, M., and Bacchelli, A. PyDriller: Python framework for mining

software repositories. In 26th Software Engineering Conference and Symposium on

the Foundations of Software Engineering (FSE), pages 908–911, 2018.

[91] Spinellis, D. A repository of Unix history and evolution. Empirical Software Engi-

neering, 22(3):1372–1404, 2017.

[92] Stoecklin, S., Smith, S., and Serino, C. Teaching students to build well formed

object-oriented methods through refactoring. In 38th Technical Symposium on Com-

puter Science Education (SIGCSE), pages 145–149, 2007. doi: 10.1145/1227310.

1227364.

[93] Tsantalis, N., Mansouri, M., Eshkevari, L., Mazinanian, D., and Ketkar, A. Refac-

toring oracle. http://refactoring.encs.concordia.ca/oracle, 2022. Online;

accessed January 2022.

[94] Tsantalis, N., Guana, V., Stroulia, E., and Hindle, A. A multidimensional empirical

study on refactoring activity. In 23th Conference of the Center for Advanced Studies

on Collaborative Research (CASCON), pages 132–146, 2013.

[95] Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., and Dig, D. Ac-

curate and efficient refactoring detection in commit history. In 40th International

Conference on Software Engineering (ICSE), pages 483–494, 2018.

[96] Tsantalis, N., Ketkar, A., and Dig, D. RefactoringMiner 2.0. IEEE Transactions

on Software Engineering (TSE), 2020.

[97] Valente, M. T. Engenharia de Software Moderna: Prinćıpios e Práticas para De-

senvolvimento de Software com Produtividade. Independente, 2022.

[98] Vassallo, C., Grano, G., Palomba, F., Gall, H., and Bacchelli, A. A large-scale em-

pirical exploration on refactoring activities in open source software projects. Science

of Computer Programming, 180:1–15, 2019.

http://refactoring.encs.concordia.ca/oracle

Bibliography 131

[99] Wang, Y. What motivate software engineers to refactor source code? evidences

from professional developers. In International Conference on Software Maintenance

(ICSM), pages 413–416, 2009.

[100] Wettel, R., Lanza, M., and Robbes, R. Software systems as cities: a controlled

experiment. In 33rd International Conference on Software Engineering (ICSE),

pages 551–560, 2011.

[101] Xie, S., Kraemer, E., and Stirewalt, R. E. K. Empirical evaluation of a uml sequence

diagram with adornments to support understanding of thread interactions. In 15th

International Conference on Program Comprehension (ICPC), pages 123–134, 2007.

[102] Xifeng Yan and Jiawei Han. gSpan: graph-based substructure pattern mining. In

2nd International Conference on Data Mining (ICDM), pages 721–724, 2002.

[103] Yi Ding, Yongmin Hang, Gang Wan, and Shuiyan He. Application of software vi-

sualization in programming teaching. In 9th International Conference on Computer

Science Education (ICCSE), pages 803–806, 2014.

[104] Zimmermann, T., Kim, S., Zeller, A., and Whitehead, E. J., Jr. Mining version

archives for co-changed lines. In 3rd International Workshop on Mining Software

Repositories (MSR), pages 72–75, 2006.

	Introduction
	Problem and Motivation
	Goals and Contributions
	Publications
	Thesis Outline

	Background & Related Work
	Detecting Refactoring Operations
	Batch and Composite Refactorings
	Refactoring Comprehension
	Catalog of Refactorings
	Other Studies on Refactoring
	Final Remarks

	Defining and Characterizing Refactoring Graphs
	Definition and Examples
	Quantitative Study
	Qualitative Study
	Discussion and Implications
	Threats to Validity
	Final Remarks

	Refactoring Comprehension Using Refactoring Graphs
	Motivation
	Video Store System
	Refactoring Subgraph from Video Store System
	Study Design
	Results
	Discussion
	Threats to Validity
	Final Remarks

	A Catalog of Composite Refactorings
	Introduction
	An Example of Composite Refactoring
	Representing Composites with Refactoring Graphs
	Catalog of Composite Refactorings
	A First Oracle of Composite Refactoring
	Composite Refactoring in the Wild
	Discussion and Implications
	Threats to Validity
	Final Remarks

	Conclusion
	Thesis Recapitulation
	Contributions
	Future Work

	Bibliography

